Skip to content
Snippets Groups Projects
Unverified Commit 73202c2f authored by Guilherme Amadio's avatar Guilherme Amadio
Browse files

[TMVA] Use dx proportional to sqrt(epsilon) as step for derivatives

See section "Practical considerations using floating point arithmetic"
from link below for some considerations about why this is a good choice.

   https://en.wikipedia.org/wiki/Numerical_differentiation
parent 1b9b6b05
No related branches found
No related tags found
No related merge requests found
......@@ -104,7 +104,9 @@ auto testActivationFunctionDerivatives()
{
evaluateDerivative<Architecture>(X, af, Y);
};
error = testDerivatives<Architecture>(f, df, 1.0e-04);
auto h = std::sqrt(std::numeric_limits<Scalar_t>::epsilon());
error = testDerivatives<Architecture>(f, df, h);
std::cout << "Testing " << static_cast<int>(af) << ": ";
std::cout << "Maximum Relative Error = " << error << std::endl;
......@@ -150,14 +152,8 @@ template<typename Architecture, typename F, typename dF>
Scalar_t y0 = f(Y, X, W);
Scalar_t dy_num = (y1 - y0) / (2.0 * dx);
Scalar_t error = 0.0;
if (std::fabs(dy) > 0) {
error = std::fabs((dy_num - dy) / dy);
}
else
error = dy_num - dy;
maximum_error = std::max(maximum_error, error);
Scalar_t error = relativeError(dy_num, dy);
maximum_error = std::max(maximum_error, error);
}
return maximum_error;
......@@ -191,7 +187,8 @@ auto testLossFunctionGradients()
evaluateGradients<Architecture>(X, lf, Y, Z, W);
};
error = testGradients<Architecture>(f, df, 5e-6);
auto h = 100.0 * std::sqrt(std::numeric_limits<Scalar_t>::epsilon());
error = testGradients<Architecture>(f, df, h);
std::cout << "Testing " << static_cast<char>(lf) << ": ";
std::cout << "Maximum Relative Error = " << error << std::endl;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment