Skip to content
Snippets Groups Projects
Unverified Commit 191c0a83 authored by Jen Looper's avatar Jen Looper Committed by GitHub
Browse files

Merge pull request #56 from jlooper/main

rearranging the repos to flatten them out
parents c6399510 7ed66da8
No related branches found
No related tags found
No related merge requests found
Showing
with 6724 additions and 2475 deletions
name: docs
on: [push]
jobs:
build-docs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master
- uses: tool3/docsify-action@master
with:
github_token: ${{ secrets.GP_TOKEN }}
dir: etc/docsify
# destination branch
File moved
Source diff could not be displayed: it is too large. Options to address this: view the blob.
This diff is collapsed.
......@@ -10,7 +10,7 @@
# Artificial Intelligence for Beginners - A Curriculum
> **This curriculum is being actively developed on GitHub. Look into [contributing](CONTRIBUTING.md) to see which areas require active contributions. Please consider this a pre-release, and do not actively use in the classroom yet!**
> **This curriculum is being actively developed on GitHub. Look into [contributing](/etc/CONTRIBUTING.md) to see which areas require active contributions. Please consider this a pre-release, and do not actively use in the classroom yet!**
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about **Artificial Intelligence**.
......@@ -27,7 +27,7 @@ What we will not cover in this curriculum:
* Business cases of using **AI in Business**. Consider taking [Introduction to AI for business users](https://docs.microsoft.com/learn/paths/introduction-ai-for-business-users/?WT.mc_id=academic-57639-dmitryso) learning path on Microsoft Learn, or [AI Business School](https://www.microsoft.com/ai/ai-business-school/?WT.mc_id=academic-57639-dmitryso), developed in cooperation with [INSEAD](https://www.insead.edu/).
* **Classic Machine Learning**, which is well described in our [Machine Learning for Beginners Curriculum](http://github.com/Microsoft/ML-for-Beginners)
* Practical AI applications built using **[Cognitive Services](https://azure.microsoft.com/services/cognitive-services/?WT.mc_id=academic-57639-dmitryso)**. For this, we recommend that you start with modules Microsoft Learn for [vision](https://docs.microsoft.com/learn/paths/create-computer-vision-solutions-azure-cognitive-services/?WT.mc_id=academic-57639-dmitryso), [natural language processing](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-57639-dmitryso) and others.
* Specific ML **Cloud Frameworks**, such as [Azure Machine Learning](https://azure.microsoft.com/services/machine-learning/?WT.mc_id=academic-57639-dmitryso) or [Azure Databricks](). Consider using [Build and operate machine learning solutions with Azure Machine Learning](https://docs.microsoft.com/learn/paths/build-ai-solutions-with-azure-ml-service/?WT.mc_id=academic-57639-dmitryso) and [Build and O perate Machine Learning Solutions with Azure Databricks](https://docs.microsoft.com/learn/paths/build-operate-machine-learning-solutions-azure-databricks/?WT.mc_id=academic-57639-dmitryso) learning paths.
* Specific ML **Cloud Frameworks**, such as [Azure Machine Learning](https://azure.microsoft.com/services/machine-learning/?WT.mc_id=academic-57639-dmitryso) or [Azure Databricks](https://docs.microsoft.com/learn/paths/data-engineer-azure-databricks?WT.mc_id=academic-57639-dmitryso). Consider using [Build and operate machine learning solutions with Azure Machine Learning](https://docs.microsoft.com/learn/paths/build-ai-solutions-with-azure-ml-service/?WT.mc_id=academic-57639-dmitryso) and [Build and Operate Machine Learning Solutions with Azure Databricks](https://docs.microsoft.com/learn/paths/build-operate-machine-learning-solutions-azure-databricks/?WT.mc_id=academic-57639-dmitryso) learning paths.
* **Conversational AI** and **Chat Bots**. There is a separate [Create conversational AI solutions](https://docs.microsoft.com/learn/paths/create-conversational-ai-solutions/?WT.mc_id=academic-57639-dmitryso) learning path, and you can also refer to [this blog post](https://soshnikov.com/azure/hello-bot-conversational-ai-on-microsoft-platform/) for more detail.
* **Deep Mathematics** behind deep learning. For this, we would recommend [Deep Learning](https://www.amazon.com/Deep-Learning-Adaptive-Computation-Machine/dp/0262035618) by Ian Goodfellow, Yoshua Bengio and Aaron Courville, which is also available online at [https://www.deeplearningbook.org/](https://www.deeplearningbook.org/).
......@@ -40,52 +40,52 @@ For a gentle introduction to *AI in the Cloud* topics you may consider taking th
<tr><th>No</th><th>Lesson</th><th>Intro</th><th>PyTorch</th><th>Keras/TensorFlow</th><th>Lab</th></tr>
<tr><td>I</td><td colspan="4"><b>Introduction to AI</b></td><td>PAT</td></tr>
<tr><td>1</td><td>Introduction and History of AI</td><td><a href="1-Intro/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td>1</td><td>Introduction and History of AI</td><td><a href="/lessons/1-Intro/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td>II</td><td colspan="4"><b>Symbolic AI</b></td><td>PAT</td></tr>
<tr><td>2 </td><td>Knowledge Representation and Expert Systems</td><td><a href="2-Symbolic/README.md">Text</a></td><td colspan="2"><a href="2-Symbolic/Animals.ipynb">Expert System</a>, <a href="2-Symbolic/FamilyOntology.ipynb">Ontology</a>, <a href="2-Symbolic/MSConceptGraph.ipynb">Concept Graph</a></td><td></td></tr>
<tr><td>III</td><td colspan="4"><b><a href="3-NeuralNetworks/README.md">Introduction to Neural Networks</a></b></td><td>PAT</td></tr>
<tr><td>2 </td><td>Knowledge Representation and Expert Systems</td><td><a href="/lessons/2-Symbolic/README.md">Text</a></td><td colspan="2"><a href="/lessons/2-Symbolic/Animals.ipynb">Expert System</a>, <a href="/lessons/2-Symbolic/FamilyOntology.ipynb">Ontology</a>, <a href="/lessons/2-Symbolic/MSConceptGraph.ipynb">Concept Graph</a></td><td></td></tr>
<tr><td>III</td><td colspan="4"><b><a href="/lessons/3-NeuralNetworks/README.md">Introduction to Neural Networks</a></b></td><td>PAT</td></tr>
<tr><td>3</td><td>Perceptron</td>
<td><a href="3-NeuralNetworks/03-Perceptron/README.md">Text</a>
<td colspan="2"><a href="3-NeuralNetworks/03-Perceptron/Perceptron.ipynb">Notebook</a></td><td><a href="3-NeuralNetworks/03-Perceptron/lab/README.md">Lab</a></td></tr>
<tr><td>4 </td><td>Multi-Layered Perceptron and Creating our own Framework</td><td><a href="3-NeuralNetworks/04-OwnFramework/README.md">Text</a></td><td colspan="2"><a href="3-NeuralNetworks/04-OwnFramework/OwnFramework.ipynb">Notebook</a><td><a href="3-NeuralNetworks/04-OwnFramework/lab/README.md">Lab</a></td></tr>
<td><a href="/lessons/3-NeuralNetworks/03-Perceptron/README.md">Text</a>
<td colspan="2"><a href="/lessons/3-NeuralNetworks/03-Perceptron/Perceptron.ipynb">Notebook</a></td><td><a href="/lessons/3-NeuralNetworks/03-Perceptron/lab/README.md">Lab</a></td></tr>
<tr><td>4 </td><td>Multi-Layered Perceptron and Creating our own Framework</td><td><a href="/lessons/3-NeuralNetworks/04-OwnFramework/README.md">Text</a></td><td colspan="2"><a href="/lessons/3-NeuralNetworks/04-OwnFramework/OwnFramework.ipynb">Notebook</a><td><a href="/lessons/3-NeuralNetworks/04-OwnFramework/lab/README.md">Lab</a></td></tr>
<tr><td>5</td>
<td>Intro to Frameworks (PyTorch/TensorFlow)<br/>Overfitting</td>
<td><a href="3-NeuralNetworks/05-Frameworks/README.md">Text</a><br/><a href="3-NeuralNetworks/05-Frameworks/Overfitting.md">Text</a></td>
<td><a href="3-NeuralNetworks/05-Frameworks/IntroPyTorch.ipynb">PyTorch</td>
<td><a href="3-NeuralNetworks/05-Frameworks/IntroKerasTF.md">Keras/TensorFlow</td>
<td><a href="3-NeuralNetworks/05-Frameworks/lab/README.md">Lab</a></td></tr>
<tr><td>IV</td><td colspan="2"><b><a href="4-ComputerVision/README.md">Computer Vision</a></b></td>
<td><a href="/lessons/3-NeuralNetworks/05-Frameworks/README.md">Text</a><br/><a href="/lessons/3-NeuralNetworks/05-Frameworks/Overfitting.md">Text</a></td>
<td><a href="/lessons/3-NeuralNetworks/05-Frameworks/IntroPyTorch.ipynb">PyTorch</td>
<td><a href="/lessons/3-NeuralNetworks/05-Frameworks/IntroKerasTF.md">Keras/TensorFlow</td>
<td><a href="/lessons/3-NeuralNetworks/05-Frameworks/lab/README.md">Lab</a></td></tr>
<tr><td>IV</td><td colspan="2"><b><a href="/lessons/4-ComputerVision/README.md">Computer Vision</a></b></td>
<td><a href="https://docs.microsoft.com/learn/modules/intro-computer-vision-pytorch/?WT.mc_id=academic-57639-dmitryso">MS Learn</a></td>
<td><a href="https://docs.microsoft.com/learn/modules/intro-computer-vision-TensorFlow/?WT.mc_id=academic-57639-dmitryso">MS Learn</a></td>
<td>PAT</td></tr>
<tr><td>6</td><td>Intro to Computer Vision. OpenCV</td><td>Text<td colspan="2">Notebook</td><td></td></tr>
<tr><td>7</td><td>Convolutional Neural Networks<br/>CNN Architectures</td><td><a href="4-ComputerVision/07-ConvNets/README.md">Text</a><br/><a href="4-ComputerVision/07-ConvNets/CNN_Architectures.md">Text</a></td><td><a href="4-ComputerVision/07-ConvNets/ConvNetsPyTorch.ipynb">PyTorch</a></td><td><a href="4-ComputerVision/07-ConvNets/ConvNetsTF.ipynb">TensorFlow</a></td><td><a href="4-ComputerVision/07-ConvNets/lab/README.md">Lab</a></td></tr>
<tr><td>8</td><td>Pre-trained Networks and Transfer Learning<br/>Training Tricks</td><td><a href="4-ComputerVision/08-TransferLearning/README.md">Text</a><br/><a href="4-ComputerVision/08-TransferLearning/TrainingTricks.md">Text</a></td><td><a href="4-ComputerVision/08-TransferLearning/TransferLearningPyTorch.ipynb">PyTorch</a></td><td><a href="4-ComputerVision/08-TransferLearning/TransferLearningTF.ipynb">TensorFlow</a><br/><a href="4-ComputerVision/08-TransferLearning/Dropout.ipynb">Dropout sample</a></td><td><a href="4-ComputerVision/08-TransferLearning/lab/README.md">Lab</a></td></tr>
<tr><td>9</td><td>Autoencoders and VAEs</td><td><a href="4-ComputerVision/09-Autoencoders/README.md">Text</a></td><td><a href="4-ComputerVision/09-Autoencoders/AutoEncodersPytorch.ipynb">PyTorch</td><td><a href="4-ComputerVision/09-Autoencoders/AutoencodersTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>10</td><td>Generative Adversarial Networks</td><td><a href="4-ComputerVision/10-GANs/README.md">Text</a></td><td><a href="4-ComputerVision/10-GANs/GANPyTorch.ipynb">PyTorch</td><td><a href="4-ComputerVision/10-GANs/GANTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>7</td><td>Convolutional Neural Networks<br/>CNN Architectures</td><td><a href="/lessons/4-ComputerVision/07-ConvNets/README.md">Text</a><br/><a href="/lessons/4-ComputerVision/07-ConvNets/CNN_Architectures.md">Text</a></td><td><a href="/lessons/4-ComputerVision/07-ConvNets/ConvNetsPyTorch.ipynb">PyTorch</a></td><td><a href="/lessons/4-ComputerVision/07-ConvNets/ConvNetsTF.ipynb">TensorFlow</a></td><td><a href="/lessons/4-ComputerVision/07-ConvNets/lab/README.md">Lab</a></td></tr>
<tr><td>8</td><td>Pre-trained Networks and Transfer Learning<br/>Training Tricks</td><td><a href="/lessons/4-ComputerVision/08-TransferLearning/README.md">Text</a><br/><a href="/lessons/4-ComputerVision/08-TransferLearning/TrainingTricks.md">Text</a></td><td><a href="/lessons/4-ComputerVision/08-TransferLearning/TransferLearningPyTorch.ipynb">PyTorch</a></td><td><a href="/lessons/4-ComputerVision/08-TransferLearning/TransferLearningTF.ipynb">TensorFlow</a><br/><a href="/lessons/4-ComputerVision/08-TransferLearning/Dropout.ipynb">Dropout sample</a></td><td><a href="/lessons/4-ComputerVision/08-TransferLearning/lab/README.md">Lab</a></td></tr>
<tr><td>9</td><td>Autoencoders and VAEs</td><td><a href="/lessons/4-ComputerVision/09-Autoencoders/README.md">Text</a></td><td><a href="/lessons/4-ComputerVision/09-Autoencoders/AutoEncodersPytorch.ipynb">PyTorch</td><td><a href="/lessons/4-ComputerVision/09-Autoencoders/AutoencodersTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>10</td><td>Generative Adversarial Networks</td><td><a href="/lessons/4-ComputerVision/10-GANs/README.md">Text</a></td><td><a href="/lessons/4-ComputerVision/10-GANs/GANPyTorch.ipynb">PyTorch</td><td><a href="/lessons/4-ComputerVision/10-GANs/GANTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>11</td><td>Object Detection</td><td>Text</td><td>PyTorch</td><td>TensorFlow</td><td></td></tr>
<tr><td>12</td><td>Semantic Segmentation. U-Net</td><td><a href="4-ComputerVision/12-Segmentation/README.md">Text</a></td><td><a href="4-ComputerVision/12-Segmentation/SemanticSegmentationPytorch.ipynb">PyTorch</td><td><a href="4-ComputerVision/12-Segmentation/SemanticSegmentationTF.ipynb">TensorFlow</td><td></td></tr>
<tr><td>V</td><td colspan="2"><b><a href="5-NLP/README.md">Natural Language Processing</a></b></td>
<tr><td>12</td><td>Semantic Segmentation. U-Net</td><td><a href="/lessons/4-ComputerVision/12-Segmentation/README.md">Text</a></td><td><a href="/lessons/4-ComputerVision/12-Segmentation/SemanticSegmentationPytorch.ipynb">PyTorch</td><td><a href="/lessons/4-ComputerVision/12-Segmentation/SemanticSegmentationTF.ipynb">TensorFlow</td><td></td></tr>
<tr><td>V</td><td colspan="2"><b><a href="/lessons/5-NLP/README.md">Natural Language Processing</a></b></td>
<td><a href="https://docs.microsoft.com/learn/modules/intro-natural-language-processing-pytorch/?WT.mc_id=academic-57639-dmitryso">MS Learn</a></td>
<td><a href="https://docs.microsoft.com/learn/modules/intro-natural-language-processing-TensorFlow/?WT.mc_id=academic-57639-dmitryso">MS Learn</a></td>
<td>PAT</td></tr>
<tr><td>13</td><td>Text Representation. Bow/TF-IDF</td><td><a href="5-NLP/13-TextRep/README.md">Text</a></td><td><a href="5-NLP/13-TextRep/TextRepresentationPyTorch.ipynb">PyTorch</a></td><td><a href="5-NLP/13-TextRep/TextRepresentationTF.ipynb">TensorFlow</td><td></td></tr>
<tr><td>14</td><td>Semantic word embeddings. Word2Vec and GloVe</td><td><a href="5-NLP/14-Embeddings/README.md">Text</td><td><a href="5-NLP/14-Embeddings/EmbeddingsPyTorch.ipynb">PyTorch</a></td><td><a href="5-NLP/14-Embeddings/EmbeddingsTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>15</td><td>Language Modeling. Training your own embeddings</td><td><a href="5-NLP/15-LanguageModeling">Text</a></td><td>PyTorch</td><td>TensorFlow</td><td></td></tr>
<tr><td>16</td><td>Recurrent Neural Networks</td><td><a href="5-NLP/16-RNN/README.md">Text</a></td><td><a href="5-NLP/16-RNN/RNNPyTorch.ipynb">PyTorch</a></td><td><a href="5-NLP/16-RNN/RNNTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>17</td><td>Generative Recurrent Networks</td><td><a href="5-NLP/17-GenerativeNetworks/README.md">Text</a></td><td><a href="5-NLP/17-GenerativeNetworks/GenerativePyTorch.md">PyTorch</a></td><td><a href="5-NLP/17-GenerativeNetworks/GenerativeTF.md">TensorFlow</a></td><td></td></tr>
<tr><td>18</td><td>Transformers. BERT.</td><td><a href="5-NLP/18-Transformers/README.md">Text</a></td><td><a href="5-NLP/18-Transformers/TransformersPyTorch.md">PyTorch</a></td><td><a href="5-NLP/18-Transformers/TransformersTF.md">TensorFlow</a></td><td></td></tr>
<tr><td>13</td><td>Text Representation. Bow/TF-IDF</td><td><a href="/lessons/5-NLP/13-TextRep/README.md">Text</a></td><td><a href="/lessons/5-NLP/13-TextRep/TextRepresentationPyTorch.ipynb">PyTorch</a></td><td><a href="/lessons/5-NLP/13-TextRep/TextRepresentationTF.ipynb">TensorFlow</td><td></td></tr>
<tr><td>14</td><td>Semantic word embeddings. Word2Vec and GloVe</td><td><a href="/lessons/5-NLP/14-Embeddings/README.md">Text</td><td><a href="/lessons/5-NLP/14-Embeddings/EmbeddingsPyTorch.ipynb">PyTorch</a></td><td><a href="/lessons/5-NLP/14-Embeddings/EmbeddingsTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>15</td><td>Language Modeling. Training your own embeddings</td><td><a href="/lessons/5-NLP/15-LanguageModeling">Text</a></td><td>PyTorch</td><td>TensorFlow</td><td></td></tr>
<tr><td>16</td><td>Recurrent Neural Networks</td><td><a href="/lessons/5-NLP/16-RNN/README.md">Text</a></td><td><a href="/lessons/5-NLP/16-RNN/RNNPyTorch.ipynb">PyTorch</a></td><td><a href="/lessons/5-NLP/16-RNN/RNNTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>17</td><td>Generative Recurrent Networks</td><td><a href="/lessons/5-NLP/17-GenerativeNetworks/README.md">Text</a></td><td><a href="/lessons/5-NLP/17-GenerativeNetworks/GenerativePyTorch.md">PyTorch</a></td><td><a href="/lessons/5-NLP/17-GenerativeNetworks/GenerativeTF.md">TensorFlow</a></td><td></td></tr>
<tr><td>18</td><td>Transformers. BERT.</td><td><a href="/lessons/5-NLP/18-Transformers/README.md">Text</a></td><td><a href="/lessons/5-NLP/18-Transformers/TransformersPyTorch.md">PyTorch</a></td><td><a href="/lessons/5-NLP/18-Transformers/TransformersTF.md">TensorFlow</a></td><td></td></tr>
<tr><td>19</td><td>Named Entity Recognition</td><td>Text</td><td>PyTorch</td><td>TensorFlow</td><td></td></tr>
<tr><td>20</td><td>Large Language Models, Prompt Programming and Few-Shot Tasks</td><td>Text</td><td>PyTorch</td><td>TensorFlow</td><td></td></tr>
<tr><td>VI</td><td colspan="4"><b>Other AI Techniques</b></td><td>PAT</td></tr>
<tr><td>21</td><td>Genetic Algorithms</td><td><a href="6-Other/21-GeneticAlgorithms/README.md">Text</a><td colspan="2"><a href="6-Other/21-GeneticAlgorithms/Genetic.ipynb">Notebook</a></td><td></td></tr>
<tr><td>22</td><td>Deep Reinforcement Learning</td><td><a href="6-Other/22-DeepRL/README.md">Text</a></td><td>PyTorch</td><td>TensorFlow</td><td></td></tr>
<tr><td>23</td><td>Multi-Agent Systems</td><td><a href="6-Other/23-MultiagentSystems/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td>21</td><td>Genetic Algorithms</td><td><a href="/lessons/6-Other/21-GeneticAlgorithms/README.md">Text</a><td colspan="2"><a href="/lessons/6-Other/21-GeneticAlgorithms/Genetic.ipynb">Notebook</a></td><td></td></tr>
<tr><td>22</td><td>Deep Reinforcement Learning</td><td><a href="/lessons/6-Other/22-DeepRL/README.md">Text</a></td><td>PyTorch</td><td>TensorFlow</td><td></td></tr>
<tr><td>23</td><td>Multi-Agent Systems</td><td><a href="/lessons/6-Other/23-MultiagentSystems/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td>VII</td><td colspan="4"><b>AI Ethics</b></td><td>PAT</td></tr>
<tr><td>24</td><td>AI Ethics and Responsible AI</td><td><a href="7-Ethics/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td>24</td><td>AI Ethics and Responsible AI</td><td><a href="/lessons/7-Ethics/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td></td><td colspan="4"><b>Extras</b></td><td></td></tr>
<tr><td>1</td><td>Multi-Modal Networks, CLIP and VQGAN</td><td><a href="X-Extras/1-MultiModal/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td>1</td><td>Multi-Modal Networks, CLIP and VQGAN</td><td><a href="/lessons/X-Extras/X1-MultiModal/README.md">Text</a></td><td></td><td></td><td></td></tr>
</table>
**[Mindmap of the Course](http://soshnikov.com/courses/ai-for-beginners/mindmap.html)**
......@@ -113,7 +113,7 @@ However, if you would like to take the course as a self-study project, we sugges
> For further study, we recommend following these [Microsoft Learn](https://docs.microsoft.com/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-15963-cxa) modules and learning paths.
**Teachers**, we have [included some suggestions](etc/for-teachers.md) on how to use this curriculum.
**Teachers**, we have [included some suggestions](/etc/for-teachers.md) on how to use this curriculum.
---
......@@ -127,7 +127,7 @@ However, if you would like to take the course as a self-study project, we sugges
## Meet the Team
[![Promo video](sketchnotes/ai-for-beginners.png)](https://youtu.be/Tj1XWrDSYJU "Promo video")
[![Promo video](./lessons/sketchnotes/ai-for-beginners.png)](https://youtu.be/Tj1XWrDSYJU "Promo video")
> 🎥 Click the image above for a video about the project and the folks who created it!
......
File deleted
- Introduction
- [Introduction to AI](../../../lessons/1-Intro/README.md)
- [Knowledge Representation and Expert Systems](../../../lessons/2-Symbolic/README.md)
- [Neural Networks - Perceptron](../../../lessons/3-NeuralNetworks/03-Perceptron/README.md)
- [Neural Networks - Your Own Framework](../../../lessons/3-NeuralNetworks/04-OwnFramework/README.md)
- [Neural Networks - Perceptron](../../../lessons/3-NeuralNetworks/05-Frameworks/README.md)
- [Computer Vision - Convolutional Neural Networks](../../../lessons/4-ComputerVision/07-ConvNets/README.md)
- [Computer Vision - Transfer Learning](../../../lessons/4-ComputerVision/08-TransferLearning/README.md)
- [Computer Vision - Autoencoders](../../../lessons/4-ComputerVision/09-Autoencoders/README.md)
- [Computer Vision - GANs](../../../lessons/4-ComputerVision/10-GANs/README.md)
- [Computer Vision - Segmentation](../../../lessons/4-ComputerVision/12-Segmentation/README.md)
- [NLP - Text Representation](../../../lessons/5-NLP/13-TextRep/README.md)
- [NLP - Embeddings](../../../lessons/5-NLP/14-Embeddings/README.md)
- [NLP - LanguageModeling](../../../lessons/5-NLP/15-LanguageModeling/README.md)
- [NLP - RNNs](../../../lessons/5-NLP/16-RNN/README.md)
- [NLP - Generative Networks](../../../lessons/5-NLP/17-GenerativeNetworks/README.md)
- [NLP - Transformers](../../../lessons/5-NLP/18-Transformers/README.md)
- [Other - Genetic Algorithms](../../../lessons/6-Other/21-GeneticAlgorithms/README.md)
- [Other - Multiagent Systems](../../../lessons/6-Other/23-MultiagentSystems/README.md)
- [Ethics](../../../lessons/7-Ethics/README.md)
\ No newline at end of file
module.exports = {
contents: ['docs/_sidebar.md'], // array of "table of contents" files path
pathToPublic: 'pdf/readme.pdf', // path where pdf will stored
contents: ['etc/docsify-to-pdf/docs/_sidebar.md'], // array of "table of contents" files path
pathToPublic: 'etc/docsify-to-pdf/pdf/readme.pdf', // path where pdf will stored
pdfOptions: {
margin: { top: '100px', bottom: '100px' }
}, // reference: https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md#pagepdfoptions
......
File moved
This diff is collapsed.
- Introduction
- [Defining Data Science](../1-Introduction/01-defining-data-science/README.md)
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>AI for Beginners</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
<meta name="description" content="Description">
<meta name="viewport"
content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0">
<link rel="icon" type="image/png" href="images/favicon.png">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/docsify-themeable@0/dist/css/theme-simple.css">
</head>
<body>
<div id="app"></div>
<script>
window.$docsify = {
name: 'AI for Beginners',
repo: 'https://github.com/Microsoft/AI-For-Beginners',
relativePath: false,
basePath: 'https://raw.githubusercontent.com/microsoft/ai-for-beginners/main/',
auto2top: true,
routerMode: 'history'
}
</script>
<script src="//cdn.jsdelivr.net/npm/docsify/lib/docsify.min.js"></script>
</body>
</html>
<meta http-equiv="refresh" content="0; url=https://github.com/jlooper/AI-For-Beginners/tree/main/etc/docsify">
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>AI for Beginners</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
<meta name="description" content="Description">
<meta name="viewport"
content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0">
<link rel="icon" type="image/png" href="images/favicon.png">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/docsify-themeable@0/dist/css/theme-simple.css">
</head>
<body>
<div id="app"></div>
<script>
window.$docsify = {
name: 'AI for Beginners',
repo: 'https://github.com/Microsoft/AI-For-Beginners',
relativePath: true,
auto2top: true,
routerMode: 'history'
}
</script>
<script src="//cdn.jsdelivr.net/npm/docsify/lib/docsify.min.js"></script>
</body>
</html>
File moved
File moved
File moved
File moved
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment