Skip to content
Snippets Groups Projects
NER-TF.ipynb 13.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Named Entity Recognition (NER)\n",
    "\n",
    "This notebook is from [AI for Beginners Curriculum](http://aka.ms/ai-beginners).\n",
    "\n",
    "In this example, we will learn how to train NER model on [Annotated Corpus for Named Entity Recognition](https://www.kaggle.com/datasets/abhinavwalia95/entity-annotated-corpus) Dataset from Kaggle. Before procedding, please donwload [ner_dataset.csv](https://www.kaggle.com/datasets/abhinavwalia95/entity-annotated-corpus?resource=download&select=ner_dataset.csv) file into current directory."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from tensorflow import keras\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Preparing the Dataset \n",
    "\n",
    "We will start by reading the dataset into a dataframe. If you want to learn more about using Pandas, visit a [lesson on data processing](https://github.com/microsoft/Data-Science-For-Beginners/tree/main/2-Working-With-Data/07-python) in our [Data Science for Beginners](http://aka.ms/datascience-beginners)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Sentence #</th>\n",
       "      <th>Word</th>\n",
       "      <th>POS</th>\n",
       "      <th>Tag</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Sentence: 1</td>\n",
       "      <td>Thousands</td>\n",
       "      <td>NNS</td>\n",
       "      <td>O</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>NaN</td>\n",
       "      <td>of</td>\n",
       "      <td>IN</td>\n",
       "      <td>O</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>NaN</td>\n",
       "      <td>demonstrators</td>\n",
       "      <td>NNS</td>\n",
       "      <td>O</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "      <td>have</td>\n",
       "      <td>VBP</td>\n",
       "      <td>O</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>NaN</td>\n",
       "      <td>marched</td>\n",
       "      <td>VBN</td>\n",
       "      <td>O</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    Sentence #           Word  POS Tag\n",
       "0  Sentence: 1      Thousands  NNS   O\n",
       "1          NaN             of   IN   O\n",
       "2          NaN  demonstrators  NNS   O\n",
       "3          NaN           have  VBP   O\n",
       "4          NaN        marched  VBN   O"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df = pd.read_csv('ner_dataset.csv',encoding='unicode-escape')\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's get unique tags and create lookup dictionaries that we can use to convert tags into class numbers:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array(['O', 'B-geo', 'B-gpe', 'B-per', 'I-geo', 'B-org', 'I-org', 'B-tim',\n",
       "       'B-art', 'I-art', 'I-per', 'I-gpe', 'I-tim', 'B-nat', 'B-eve',\n",
       "       'I-eve', 'I-nat'], dtype=object)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tags = df.Tag.unique()\n",
    "tags"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'O'"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "id2tag = dict(enumerate(tags))\n",
    "tag2id = { v : k for k,v in id2tag.items() }\n",
    "\n",
    "id2tag[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we need to do the same with vocabulary. For simplicity, we will create vocabulary without taking word frequency into account; in real life you might want to use Keras vectorizer, and limit the number of words."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "vocab = set(df['Word'].apply(lambda x: x.lower()))\n",
    "id2word = { i+1 : v for i,v in enumerate(vocab) }\n",
    "id2word[0] = '<UNK>'\n",
    "vocab.add('<UNK>')\n",
    "word2id = { v : k for k,v in id2word.items() }"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We need to create a dataset of sentences for training. Let's loop through the original dataset and separate all individual sentences into `X` (lists of words) and `Y` (list of tokens):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [],
   "source": [
    "X,Y = [],[]\n",
    "s,t = [],[]\n",
    "for i,row in df[['Sentence #','Word','Tag']].iterrows():\n",
    "    if pd.isna(row['Sentence #']):\n",
    "        s.append(row['Word'])\n",
    "        t.append(row['Tag'])\n",
    "    else:\n",
    "        if len(s)>0:\n",
    "            X.append(s)\n",
    "            Y.append(t)\n",
    "        s,t = [row['Word']],[row['Tag']]\n",
    "X.append(s)\n",
    "Y.append(t)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will now vectorize all words and tokens:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "([10386,\n",
       "  23515,\n",
       "  4134,\n",
       "  29620,\n",
       "  7954,\n",
       "  13583,\n",
       "  21193,\n",
       "  12222,\n",
       "  27322,\n",
       "  18258,\n",
       "  5815,\n",
       "  15880,\n",
       "  5355,\n",
       "  25242,\n",
       "  31327,\n",
       "  18258,\n",
       "  27067,\n",
       "  23515,\n",
       "  26444,\n",
       "  14412,\n",
       "  358,\n",
       "  26551,\n",
       "  5011,\n",
       "  30558],\n",
       " [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0])"
      ]
     },
     "execution_count": 93,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def vectorize(seq):\n",
    "    return [word2id[x.lower()] for x in seq]\n",
    "\n",
    "def tagify(seq):\n",
    "    return [tag2id[x] for x in seq]\n",
    "\n",
    "Xv = list(map(vectorize,X))\n",
    "Yv = list(map(tagify,Y))\n",
    "\n",
    "Xv[0], Yv[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For simplicity, we will pad all sentences with 0 tokens to the maximum length. In real life, we might want to use more clever strategy, and pad sequences only within one minibatch."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [],
   "source": [
    "X_data = keras.preprocessing.sequence.pad_sequences(Xv,padding='post')\n",
    "Y_data = keras.preprocessing.sequence.pad_sequences(Yv,padding='post')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Defining Token Classification Network\n",
    "\n",
    "We will use two-layer bidirectional LSTM network for token classification. In order to apply dense classifier to each of the output of the last LSTM layer, we will use `TimeDistributed` construction, which replicates the same dense layer to each of the outputs of LSTM at each step: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential_3\"\n",
      "_________________________________________________________________\n",
      " Layer (type)                Output Shape              Param #   \n",
      "=================================================================\n",
      " embedding_4 (Embedding)     (None, 104, 300)          9545400   \n",
      "                                                                 \n",
      " bidirectional_6 (Bidirectio  (None, 104, 200)         320800    \n",
      " nal)                                                            \n",
      "                                                                 \n",
      " bidirectional_7 (Bidirectio  (None, 104, 200)         240800    \n",
      " nal)                                                            \n",
      "                                                                 \n",
      " time_distributed_3 (TimeDis  (None, 104, 17)          3417      \n",
      " tributed)                                                       \n",
      "                                                                 \n",
      "=================================================================\n",
      "Total params: 10,110,417\n",
      "Trainable params: 10,110,417\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "maxlen = X_data.shape[1]\n",
    "vocab_size = len(vocab)\n",
    "num_tags = len(tags)\n",
    "model = keras.models.Sequential([\n",
    "    keras.layers.Embedding(vocab_size, 300, input_length=maxlen),\n",
    "    keras.layers.Bidirectional(keras.layers.LSTM(units=100, activation='tanh', return_sequences=True)),\n",
    "    keras.layers.Bidirectional(keras.layers.LSTM(units=100, activation='tanh', return_sequences=True)),\n",
    "    keras.layers.TimeDistributed(keras.layers.Dense(num_tags, activation='softmax'))\n",
    "])\n",
    "model.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['acc'])\n",
    "model.summary()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note here that we are explicity specifying `maxlen` for our dataset - in case we want the network to be able to handle variable length sequences, we need to be a bit more clever when defining the network.\n",
    "\n",
    "Let's now train the model. For speed, we will only train for one epoch, but you may try training for longer time. Also, you may want to separate some part of the dataset as training dataset, to observe validation accuracy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1499/1499 [==============================] - 740s 488ms/step - loss: 0.0667 - acc: 0.9841\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.callbacks.History at 0x16f0bb2a310>"
      ]
     },
     "execution_count": 57,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model.fit(X_data,Y_data)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Testing the Result\n",
    "\n",
    "Let's now see how our entity recognition model works on a sample sentence: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 91,
   "metadata": {},
   "outputs": [],
   "source": [
    "sent = 'John Smith went to Paris to attend a conference in cancer development institute'\n",
    "words = sent.lower().split()\n",
    "v = keras.preprocessing.sequence.pad_sequences([[word2id[x] for x in words]],padding='post',maxlen=maxlen)\n",
    "res = model(v)[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "john -> B-per\n",
      "smith -> I-per\n",
      "went -> O\n",
      "to -> O\n",
      "paris -> B-geo\n",
      "to -> O\n",
      "attend -> O\n",
      "a -> O\n",
      "conference -> O\n",
      "in -> O\n",
      "cancer -> B-org\n",
      "development -> I-org\n",
      "institute -> I-org\n"
     ]
    }
   ],
   "source": [
    "r = np.argmax(res.numpy(),axis=1)\n",
    "for i,w in zip(r,words):\n",
    "    print(f\"{w} -> {id2tag[i]}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Takeaway\n",
    "\n",
    "Even simple LSTM model shows reasonable results at NER. However, to get much better results, you may want to use large pre-trained language models such as BERT. Training BERT for NER using Huggingface Transformers library is described [here](https://huggingface.co/course/chapter7/2?fw=pt)."
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "16af2a8bbb083ea23e5e41c7f5787656b2ce26968575d8763f2c4b17f9cd711f"
  },
  "kernelspec": {
   "display_name": "Python 3.8.12 ('py38')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.12"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}