Skip to content
Snippets Groups Projects
README.md 20.6 KiB
Newer Older
[![GitHub license](https://img.shields.io/github/license/microsoft/AI-For-Beginners.svg)](https://github.com/microsoft/AI-For-Beginners/blob/main/LICENSE)
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/AI-For-Beginners.svg)](https://GitHub.com/microsoft/AI-For-Beginners/graphs/contributors/)
[![GitHub issues](https://img.shields.io/github/issues/microsoft/AI-For-Beginners.svg)](https://GitHub.com/microsoft/AI-For-Beginners/issues/)
[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/AI-For-Beginners.svg)](https://GitHub.com/microsoft/AI-For-Beginners/pulls/)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/AI-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/AI-For-Beginners/watchers/)
[![GitHub forks](https://img.shields.io/github/forks/microsoft/AI-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/AI-For-Beginners/network/)
[![GitHub stars](https://img.shields.io/github/stars/microsoft/AI-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/AI-For-Beginners/stargazers/)
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/microsoft/ai-for-beginners/HEAD)
[![Gitter](https://badges.gitter.im/Microsoft/ai-for-beginners.svg)](https://gitter.im/Microsoft/ai-for-beginners?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
# Artificial Intelligence for Beginners - A Curriculum
Jen Looper's avatar
Jen Looper committed
|![ Sketchnote by [(@girlie_mac)](https://twitter.com/girlie_mac) ](./lessons/sketchnotes/ai-overview.png)|
|:---:|
| AI For Beginners - _Sketchnote by [@girlie_mac](https://twitter.com/girlie_mac)_ |

Jen Looper's avatar
Jen Looper committed
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about **Artificial Intelligence**. 
Jen Looper's avatar
Jen Looper committed
In this curriculum, you will learn:

* Different approaches to Artificial Intelligence, including the "good old" symbolic approach with **Knowledge Representation** and reasoning ([GOFAI](https://en.wikipedia.org/wiki/Symbolic_artificial_intelligence)).
* **Neural Networks** and **Deep Learning**, which are at the core of modern AI. We will illustrate the concepts behind these important topics using code in two of the most popular frameworks - [TensorFlow](http://Tensorflow.org) and [PyTorch](http://pytorch.org).
Jen Looper's avatar
Jen Looper committed
* **Neural Architectures** for working with images and text. We will cover recent models but may lack a little bit on the state-of-the-art.
* Less popular AI approaches, such as **Genetic Algorithms** and **Multi-Agent Systems**.
Jen Looper's avatar
Jen Looper committed
What we will not cover in this curriculum:
* Business cases of using **AI in Business**. Consider taking [Introduction to AI for business users](https://docs.microsoft.com/learn/paths/introduction-ai-for-business-users/?WT.mc_id=academic-57639-dmitryso) learning path on Microsoft Learn, or [AI Business School](https://www.microsoft.com/ai/ai-business-school/?WT.mc_id=academic-57639-dmitryso), developed in cooperation with [INSEAD](https://www.insead.edu/).
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
* **Classic Machine Learning**, which is well described in our [Machine Learning for Beginners Curriculum](http://github.com/Microsoft/ML-for-Beginners)
* Practical AI applications built using **[Cognitive Services](https://azure.microsoft.com/services/cognitive-services/?WT.mc_id=academic-57639-dmitryso)**. For this, we recommend that you start with modules Microsoft Learn for [vision](https://docs.microsoft.com/learn/paths/create-computer-vision-solutions-azure-cognitive-services/?WT.mc_id=academic-57639-dmitryso), [natural language processing](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-57639-dmitryso) and others.
Jen Looper's avatar
Jen Looper committed
* Specific ML **Cloud Frameworks**, such as [Azure Machine Learning](https://azure.microsoft.com/services/machine-learning/?WT.mc_id=academic-57639-dmitryso) or [Azure Databricks](https://docs.microsoft.com/learn/paths/data-engineer-azure-databricks?WT.mc_id=academic-57639-dmitryso). Consider using [Build and operate machine learning solutions with Azure Machine Learning](https://docs.microsoft.com/learn/paths/build-ai-solutions-with-azure-ml-service/?WT.mc_id=academic-57639-dmitryso) and [Build and Operate Machine Learning Solutions with Azure Databricks](https://docs.microsoft.com/learn/paths/build-operate-machine-learning-solutions-azure-databricks/?WT.mc_id=academic-57639-dmitryso) learning paths.
* **Conversational AI** and **Chat Bots**. There is a separate [Create conversational AI solutions](https://docs.microsoft.com/learn/paths/create-conversational-ai-solutions/?WT.mc_id=academic-57639-dmitryso) learning path, and you can also refer to [this blog post](https://soshnikov.com/azure/hello-bot-conversational-ai-on-microsoft-platform/) for more detail.
* **Deep Mathematics** behind deep learning. For this, we would recommend [Deep Learning](https://www.amazon.com/Deep-Learning-Adaptive-Computation-Machine/dp/0262035618) by Ian Goodfellow, Yoshua Bengio and Aaron Courville, which is also available online at [https://www.deeplearningbook.org/](https://www.deeplearningbook.org/).
Jen Looper's avatar
Jen Looper committed
For a gentle introduction to *AI in the Cloud* topics you may consider taking the [Get started with artificial intelligence on Azure](https://docs.microsoft.com/learn/paths/get-started-with-artificial-intelligence-on-azure/?WT.mc_id=academic-57639-dmitryso) Learning Path.
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
---
# Content
<table>
<tr><th>No</th><th>Lesson</th><th>Intro</th><th>PyTorch</th><th>Keras/TensorFlow</th><th>Lab</th></tr>
<tr><td>I</td><td colspan="4"><b>Introduction to AI</b></td><td></td></tr>
Jen Looper's avatar
Jen Looper committed
<tr><td>1</td><td>Introduction and History of AI</td><td><a href="lessons/1-Intro/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td>II</td><td colspan="4"><b>Symbolic AI</b></td><td></td></tr>
Jen Looper's avatar
Jen Looper committed
<tr><td>2 </td><td>Knowledge Representation and Expert Systems</td><td><a href="lessons/2-Symbolic/README.md">Text</a></td><td colspan="2"><a href="lessons/2-Symbolic/Animals.ipynb">Expert System</a>, <a href="lessons/2-Symbolic/FamilyOntology.ipynb">Ontology</a>, <a href="lessons/2-Symbolic/MSConceptGraph.ipynb">Concept Graph</a></td><td></td></tr>
<tr><td>III</td><td colspan="4"><b><a href="lessons/3-NeuralNetworks/README.md">Introduction to Neural Networks</a></b></td><td></td></tr>
<tr><td>3</td><td>Perceptron</td>
Jen Looper's avatar
Jen Looper committed
   <td><a href="lessons/3-NeuralNetworks/03-Perceptron/README.md">Text</a>
   <td colspan="2"><a href="lessons/3-NeuralNetworks/03-Perceptron/Perceptron.ipynb">Notebook</a></td><td><a href="lessons/3-NeuralNetworks/03-Perceptron/lab/README.md">Lab</a></td></tr>
<tr><td>4 </td><td>Multi-Layered Perceptron and Creating our own Framework</td><td><a href="lessons/3-NeuralNetworks/04-OwnFramework/README.md">Text</a></td><td colspan="2"><a href="lessons/3-NeuralNetworks/04-OwnFramework/OwnFramework.ipynb">Notebook</a><td><a href="lessons/3-NeuralNetworks/04-OwnFramework/lab/README.md">Lab</a></td></tr> 
<tr><td>5</td>
   <td>Intro to Frameworks (PyTorch/TensorFlow)<br/>Overfitting</td>
Jen Looper's avatar
Jen Looper committed
   <td><a href="lessons/3-NeuralNetworks/05-Frameworks/README.md">Text</a><br/><a href="lessons/3-NeuralNetworks/05-Frameworks/Overfitting.md">Text</a></td>
   <td><a href="lessons/3-NeuralNetworks/05-Frameworks/IntroPyTorch.ipynb">PyTorch</a></td>
   <td><a href="lessons/3-NeuralNetworks/05-Frameworks/IntroKeras.ipynb">Keras</a>/<a href="lessons/3-NeuralNetworks/05-Frameworks/IntroKerasTF.ipynb">TensorFlow</a></td>
Jen Looper's avatar
Jen Looper committed
   <td><a href="lessons/3-NeuralNetworks/05-Frameworks/lab/README.md">Lab</a></td></tr>
<tr><td>IV</td><td><b><a href="lessons/4-ComputerVision/README.md">Computer Vision</a></b></td>
  <td colspan="3"><a href="https://docs.microsoft.com/learn/paths/explore-computer-vision-microsoft-azure/?WT.mc_id=academic-57639-dmitryso"><i>AI Fundamentals: Explore Computer Vision</i></a></td>
<tr><td></td><td colspan="2"><i>Microsoft Learn Module on Computer Vision</i></td>
  <td><a href="https://docs.microsoft.com/learn/modules/intro-computer-vision-pytorch/?WT.mc_id=academic-57639-dmitryso"><i>PyTorch</i></a></td>
  <td><a href="https://docs.microsoft.com/learn/modules/intro-computer-vision-TensorFlow/?WT.mc_id=academic-57639-dmitryso"><i>TensorFlow</i></a></td>
<tr><td>6</td><td>Intro to Computer Vision. OpenCV</td><td><a href="lessons/4-ComputerVision/06-IntroCV/README.md">Text</a><td colspan="2"><a href="lessons/4-ComputerVision/06-IntroCV/OpenCV.ipynb">Notebook</a></td><td><a href="lessons/4-ComputerVision/06-IntroCV/lab/README.md">Lab</a></td></tr>
Jen Looper's avatar
Jen Looper committed
<tr><td>7</td><td>Convolutional Neural Networks<br/>CNN Architectures</td><td><a href="lessons/4-ComputerVision/07-ConvNets/README.md">Text</a><br/><a href="lessons/4-ComputerVision/07-ConvNets/CNN_Architectures.md">Text</a></td><td><a href="lessons/4-ComputerVision/07-ConvNets/ConvNetsPyTorch.ipynb">PyTorch</a></td><td><a href="lessons/4-ComputerVision/07-ConvNets/ConvNetsTF.ipynb">TensorFlow</a></td><td><a href="lessons/4-ComputerVision/07-ConvNets/lab/README.md">Lab</a></td></tr>
<tr><td>8</td><td>Pre-trained Networks and Transfer Learning<br/>Training Tricks</td><td><a href="lessons/4-ComputerVision/08-TransferLearning/README.md">Text</a><br/><a href="lessons/4-ComputerVision/08-TransferLearning/TrainingTricks.md">Text</a></td><td><a href="lessons/4-ComputerVision/08-TransferLearning/TransferLearningPyTorch.ipynb">PyTorch</a></td><td><a href="lessons/4-ComputerVision/08-TransferLearning/TransferLearningTF.ipynb">TensorFlow</a><br/><a href="lessons/4-ComputerVision/08-TransferLearning/Dropout.ipynb">Dropout sample</a><br/><a href="lessons/4-ComputerVision/08-TransferLearning/AdversarialCat_TF.ipynb">Adversarial Cat</a></td><td><a href="lessons/4-ComputerVision/08-TransferLearning/lab/README.md">Lab</a></td></tr>
<tr><td>9</td><td>Autoencoders and VAEs</td><td><a href="lessons/4-ComputerVision/09-Autoencoders/README.md">Text</a></td><td><a href="lessons/4-ComputerVision/09-Autoencoders/AutoEncodersPyTorch.ipynb">PyTorch</a></td><td><a href="lessons/4-ComputerVision/09-Autoencoders/AutoencodersTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>10</td><td>Generative Adversarial Networks<br/>Artistic Style Transfer</td><td><a href="lessons/4-ComputerVision/10-GANs/README.md">Text</a></td><td><a href="lessons/4-ComputerVision/10-GANs/GANPyTorch.ipynb">PyTorch</td><td><a href="lessons/4-ComputerVision/10-GANs/GANTF.ipynb">TensorFlow GAN</a><br/><a href="lessons/4-ComputerVision/10-GANs/StyleTransfer.ipynb">Style Transfer</a></td><td></td></tr>
<tr><td>11</td><td>Object Detection</td><td><a href="lessons/4-ComputerVision/11-ObjectDetection/README.md">Text</a></td><td>PyTorch</td><td><a href="lessons/4-ComputerVision/11-ObjectDetection/ObjectDetection.ipynb">TensorFlow</td><td><a href="lessons/4-ComputerVision/11-ObjectDetection/lab/README.md">Lab</a></td></tr>
Jen Looper's avatar
Jen Looper committed
<tr><td>12</td><td>Semantic Segmentation. U-Net</td><td><a href="lessons/4-ComputerVision/12-Segmentation/README.md">Text</a></td><td><a href="lessons/4-ComputerVision/12-Segmentation/SemanticSegmentationPytorch.ipynb">PyTorch</td><td><a href="lessons/4-ComputerVision/12-Segmentation/SemanticSegmentationTF.ipynb">TensorFlow</td><td></td></tr>
<tr><td>V</td><td><b><a href="lessons/5-NLP/README.md">Natural Language Processing</a></b></td>
   <td colspan="3"><a href="https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-57639-dmitryso"><i>AI Fundamentals: Explore Natural Language Processing</i></a></td>
<tr><td></td><td colspan="2"><i>Microsoft Learn Module on Natural Language</i></td>
   <td><a href="https://docs.microsoft.com/learn/modules/intro-natural-language-processing-pytorch/?WT.mc_id=academic-57639-dmitryso"><i>PyTorch</i></a></td>
   <td><a href="https://docs.microsoft.com/learn/modules/intro-natural-language-processing-TensorFlow/?WT.mc_id=academic-57639-dmitryso"><i>TensorFlow</i></a></td>
Jen Looper's avatar
Jen Looper committed
<tr><td>13</td><td>Text Representation. Bow/TF-IDF</td><td><a href="lessons/5-NLP/13-TextRep/README.md">Text</a></td><td><a href="lessons/5-NLP/13-TextRep/TextRepresentationPyTorch.ipynb">PyTorch</a></td><td><a href="lessons/5-NLP/13-TextRep/TextRepresentationTF.ipynb">TensorFlow</td><td></td></tr>
<tr><td>14</td><td>Semantic word embeddings. Word2Vec and GloVe</td><td><a href="lessons/5-NLP/14-Embeddings/README.md">Text</td><td><a href="lessons/5-NLP/14-Embeddings/EmbeddingsPyTorch.ipynb">PyTorch</a></td><td><a href="lessons/5-NLP/14-Embeddings/EmbeddingsTF.ipynb">TensorFlow</a></td><td></td></tr>
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
<tr><td>15</td><td>Language Modeling. Training your own embeddings</td><td><a href="lessons/5-NLP/15-LanguageModeling/README.md">Text</a></td><td></td><td><a href="lessons/5-NLP/15-LanguageModeling/CBoW-TF.ipynb">TensorFlow</a></td><td><a href="lessons/5-NLP/15-LanguageModeling/lab/README.md">Lab</a></td></tr>
Jen Looper's avatar
Jen Looper committed
<tr><td>16</td><td>Recurrent Neural Networks</td><td><a href="lessons/5-NLP/16-RNN/README.md">Text</a></td><td><a href="lessons/5-NLP/16-RNN/RNNPyTorch.ipynb">PyTorch</a></td><td><a href="lessons/5-NLP/16-RNN/RNNTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>17</td><td>Generative Recurrent Networks</td><td><a href="lessons/5-NLP/17-GenerativeNetworks/README.md">Text</a></td><td><a href="lessons/5-NLP/17-GenerativeNetworks/GenerativePyTorch.md">PyTorch</a></td><td><a href="lessons/5-NLP/17-GenerativeNetworks/GenerativeTF.md">TensorFlow</a></td><td><a href="lessons/5-NLP/17-GenerativeNetworks/lab/README.md">Lab</a></td></tr>
<tr><td>18</td><td>Transformers. BERT.</td><td><a href="lessons/5-NLP/18-Transformers/README.md">Text</a></td><td><a href="lessons/5-NLP/18-Transformers/TransformersPyTorch.ipynb">PyTorch</a></td><td><a href="lessons/5-NLP/18-Transformers/TransformersTF.ipynb">TensorFlow</a></td><td></td></tr>
<tr><td>19</td><td>Named Entity Recognition</td><td><a href="lessons/5-NLP/19-NER/README.md">Text</a></td><td></td><td><a href="lessons/5-NLP/19-NER/NER-TF.ipynb">TensorFlow</a></td><td><a href="lessons/5-NLP/19-NER/lab/README.md">Lab</a></td></tr>
<tr><td>20</td><td>Large Language Models, Prompt Programming and Few-Shot Tasks</td><td><a href="lessons/5-NLP/20-LangModels/README.md">Text</a></td><td><a href="lessons/5-NLP/20-LangModels/GPT-PyTorch.ipynb">PyTorch</td><td></td><td></td></tr>
<tr><td>VI</td><td colspan="4"><b>Other AI Techniques</b></td><td></td></tr>
Jen Looper's avatar
Jen Looper committed
<tr><td>21</td><td>Genetic Algorithms</td><td><a href="lessons/6-Other/21-GeneticAlgorithms/README.md">Text</a><td colspan="2"><a href="lessons/6-Other/21-GeneticAlgorithms/Genetic.ipynb">Notebook</a></td><td></td></tr>
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
<tr><td>22</td><td>Deep Reinforcement Learning</td><td><a href="lessons/6-Other/22-DeepRL/README.md">Text</a></td><td></td><td><a href="lessons/6-Other/22-DeepRL/CartPole-RL-TF.ipynb">TensorFlow</td><td><a href="lessons/6-Other/22-DeepRL/lab/README.md">Lab</a></td></tr>
Jen Looper's avatar
Jen Looper committed
<tr><td>23</td><td>Multi-Agent Systems</td><td><a href="lessons/6-Other/23-MultiagentSystems/README.md">Text</a></td><td></td><td></td><td></td></tr>
<tr><td>VII</td><td colspan="4"><b>AI Ethics</b></td><td></td></tr>
<tr><td>24</td><td>AI Ethics and Responsible AI</td><td><a href="lessons/7-Ethics/README.md">Text</a></td><td colspan="2"><a href="https://docs.microsoft.com/learn/paths/responsible-ai-business-principles/?WT.mc_id=academic-57639-dmitryso"><i>MS Learn: Responsible AI Principles</i></a></td><td></td></tr>
<tr><td></td><td colspan="4"><b>Extras</b></td><td></td></tr>
<tr><td>X1</td><td>Multi-Modal Networks, CLIP and VQGAN</td><td><a href="lessons/X-Extras/X1-MultiModal/README.md">Text</a></td><td colspan="2"><a href="lessons/X-Extras/X1-MultiModal/Clip.ipynb">Notebook</a></td><td></td></tr>
</table>
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
**[Mindmap of the Course](http://soshnikov.com/courses/ai-for-beginners/mindmap.html)**
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed

Jen Looper's avatar
Jen Looper committed
Each lesson contains some pre-reading material (linked as **Text** above), and some executable Jupyter Notebooks, which are often specific to the framework (**PyTorch** or **TensorFlow**). The executable notebook also contains a lot of theoretical material, so to understand the topic you need to go through at least one version of the notebooks (either PyTorch or TensorFlow). There are also **Labs** available for some topics, which give you an opportunity to try applying the material you have learned to a specific problem. 
Jen Looper's avatar
Jen Looper committed
Some sections also contain links to **MS Learn** modules that cover related topics. Microsoft Learn provides a convenient GPU-enabled learning environment, although in terms of content you can expect this curriculum to go a bit deeper.
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed

# Getting Started

Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
**Students**, there are a couple of ways to use the curriculum. First of all, you can just read the text and look through the code directly on GitHub. If you want to run the code in any of the notebooks - [read our instructions](./etc/how-to-run.md), and find more advice on how to do it [in this blog post](https://soshnikov.com/education/how-to-execute-notebooks-from-github/).
> **Note**: [Instructions on how to run the code in this curriculum](./etc/how-to-run.md)
Jen Looper's avatar
Jen Looper committed
However, if you would like to take the course as a self-study project, we suggest that you fork the entire repo to your own GitHub account and complete the exercises on your own or with a group:
Jen Looper's avatar
Jen Looper committed
- Start with a pre-lecture quiz
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
- Read the intro text for the lecture 
- If the lecture has additional notebooks, go through them, reading and executing the code. If both TensorFlow and PyTorch notebooks are provided, you can focus on one of them - chose your favorite framework
Jen Looper's avatar
Jen Looper committed
- Notebooks often contain some of the challenges that require you to tweak the code a little bit to experiment
- Take the post-lecture quiz
- If there is a lab attached to the module - complete the assignment
- Visit the [Discussion board](https://github.com/microsoft/AI-For-Beginners/discussions) to "learn out loud".
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
- Chat with other learners [on Gitter](https://gitter.im/Microsoft/ai-for-beginners) or [in Telegram channel](http://t.me/ai_for_beginners).
> For further study, we recommend following these [Microsoft Learn](https://docs.microsoft.com/en-us/users/dmitrysoshnikov-9132/collections/31zgizg2p418yo/?WT.mc_id=academic-57639-dmitryso) modules and learning paths.
Jen Looper's avatar
Jen Looper committed
**Teachers**, we have [included some suggestions](/etc/for-teachers.md) on how to use this curriculum.
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
**✍️ Primary Author:** [Dmitry Soshnikov](http://soshnikov.com), PhD <br/>
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
**🔥 Editor:** [Jen Looper](https://twitter.com/jenlooper), PhD <br/>
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed
**🎨 Sketchnote illustrator:** [Tomomi Imura](https://twitter.com/girlie_mac) <br/>
**✅ Quiz Creator:** [Lateefah Bello](https://github.com/CinnamonXI), [MLSA](https://studentambassadors.microsoft.com/)  <br/>
**🙏 Core Contributors:** [Evgenii Pishchik](https://github.com/Pe4enIks) 
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed

## Meet the Team

[![Promo video](/lessons/sketchnotes/ai-for-beginners.png)](https://youtu.be/m2KrAk0cC1c "Promo video")
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed

> 🎥 Click the image above for a video about the project and the folks who created it!

---

## Pedagogy

We have chosen two pedagogical tenets while building this curriculum: ensuring that it is hands-on **project-based** and that it includes **frequent quizzes**.

By ensuring that the content aligns with projects, the process is made more engaging for students and retention of concepts will be augmented. In addition, a low-stakes quiz before a class sets the intention of the student towards learning a topic, while a second quiz after class ensures further retention. This curriculum was designed to be flexible and fun and can be taken in whole or in part. The projects start small and become increasingly complex by the end of the 12 week cycle.

Jen Looper's avatar
Jen Looper committed
> Find our [Code of Conduct](etc/CODE_OF_CONDUCT.md), [Contributing](etc/CONTRIBUTING.md), and [Translation](etc/TRANSLATIONS.md) guidelines. Find our [Support Documentation here](etc/SUPPORT.md) and [security information here](etc/SECURITY.md). We welcome your constructive feedback!
Julia Muiruri's avatar
Julia Muiruri committed
> **A note about quizzes**: All quizzes are contained [in this app](https://green-forest-02da2d60f.1.azurestaticapps.net/), for 50 total quizzes of three questions each. They are linked from within the lessons but the quiz app can be run locally; follow the instruction in the `etc/quiz-app` folder.
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed

## Offline access

You can run this documentation offline by using [Docsify](https://docsify.js.org/#/). Fork this repo, [install Docsify](https://docsify.js.org/#/quickstart) on your local machine, and then in the `etc/docsify` folder of this repo, type `docsify serve`. The website will be served on port 3000 on your localhost: `localhost:3000`. A pdf of the curriculum is available [at this link](/etc/pdf/readme.pdf).
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed

## Help Wanted!

Jen Looper's avatar
Jen Looper committed
Would you like to contribute a translation? Please read our [translation guidelines](etc/TRANSLATIONS.md).
Dmitri Soshnikov's avatar
Dmitri Soshnikov committed

## Other Curricula

Our team produces other curricula! Check out:

- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
Lee Stott's avatar
Lee Stott committed
- [Data Science for Beginners](https://aka.ms/datascience-beginners)