An error occurred while fetching folder content.
Rene Brun
authored
Int_t TMinuit::Eval(Int_t &npar, Double_t *grad, Double_t &fval, Double_t *par, Int_t flag) // Evaluate the minimisation function // Input parameters: // npar: number of currently variable parameters // par: array of (constant and variable) parameters // flag: Indicates what is to be calculated (see example below) // grad: array of gradients // Output parameters: // fval: The calculated function value. // grad: The (optional) vector of first derivatives). // // The meaning of the parameters par is of course defined by the user, // who uses the values of those parameters to calculate his function value. // The starting values must be specified by the user. // Later values are determined by Minuit as it searches for the minimum // or performs whatever analysis is requested by the user. // // Note that this virtual function may be redefined in a class derived from TMinuit. // The default function calls the function specified in SetFCN // // Example of Minimisation function: /* if (flag == 1) { read input data, calculate any necessary constants, etc. } if (flag == 2) { calculate GRAD, the first derivatives of FVAL (this is optional) } Always calculate the value of the function, FVAL, which is usually a chisquare or log likelihood. if (iflag == 3) { will come here only after the fit is finished. Perform any final calculations, output fitted data, etc. } */ // See concrete examples in TH1::H1FitChisquare, H1FitLikelihood git-svn-id: http://root.cern.ch/svn/root/trunk@3970 27541ba8-7e3a-0410-8455-c3a389f83636
Name | Last commit | Last update |
---|---|---|
.. |