Skip to content
Snippets Groups Projects
Commit fca218f5 authored by Rene Brun's avatar Rene Brun
Browse files

New file for openGL

git-svn-id: http://root.cern.ch/svn/root/trunk@9696 27541ba8-7e3a-0410-8455-c3a389f83636
parent 5d7895c5
No related branches found
No related tags found
No related merge requests found
/** KempoApi: The Turloc Toolkit *****************************/
/** * * **/
/** ** ** Filename: ArcBall.cpp **/
/** ** Version: Common **/
/** ** **/
/** **/
/** Arcball class for mouse manipulation. **/
/** **/
/** **/
/** **/
/** **/
/** (C) 1999-2003 Tatewake.com **/
/** History: **/
/** 08/17/2003 - (TJG) - Creation **/
/** 09/23/2003 - (TJG) - Bug fix and optimization **/
/** 09/25/2003 - (TJG) - Version for NeHe Basecode users **/
/** **/
/*************************************************************/
#include <TPoint.h>
#include <TMath.h>
#include "TArcBall.h"
const Double_t Epsilon = 1.0e-5;
//Arcball sphere constants:
//Diameter is 2.0f
//Radius is 1.0f
//Radius squared is 1.0f
inline void Vector3dCross(Double_t * NewObj, const Double_t * v1, const Double_t * v2)
{
NewObj[0] = v1[1] * v2[2] - v1[2] * v2[1];
NewObj[1] = v1[2] * v2[0] - v1[0] * v2[2];
NewObj[2] = v1[0] * v2[1] - v1[1] * v2[0];
}
inline Double_t Vector3dDot(const Double_t * NewObj, const Double_t * v1)
{
return NewObj[0] * v1[0] + NewObj[1] * v1[1] + NewObj[2] * v1[2];
}
inline Double_t Vector3dLengthSquared(const Double_t * NewObj)
{
return NewObj[0] * NewObj[0] + NewObj[1] * NewObj[1] + NewObj[2] * NewObj[2];
}
inline Double_t Vector3dLength(const Double_t * NewObj)
{
return TMath::Sqrt(Vector3dLengthSquared(NewObj));
}
inline void Matrix3dSetZero(Double_t * NewObj)
{
for(Int_t i = 0; i < 9; ++i)
NewObj[i] = 0.;
}
inline void Matrix3dSetIdentity(Double_t * NewObj)
{
Matrix3dSetZero(NewObj);
//then set diagonal as 1
NewObj[0] = NewObj[4] = NewObj[8] = 1.;
}
/**
* Sets the value of this matrix to the matrix conversion of the
* quaternion argument.
* @param q1 the quaternion to be converted
*/
//$hack this can be optimized some(if s == 0)
//void Matrix3fSetRotationFromQuat4f(Matrix3fT * NewObj, const Quat4fT * q1)
void Matrix3dSetRotationFromQuat4d(Double_t * NewObj, const Double_t * q1)
{
Double_t n = (q1[0] * q1[0]) + (q1[1] * q1[1]) + (q1[2] * q1[2]) + (q1[3] * q1[3]);
Double_t s = (n > 0.0f) ? (2.0f / n) : 0.0f;
Double_t xs = q1[0] * s, ys = q1[1] * s, zs = q1[2] * s;
Double_t wx = q1[3] * xs, wy = q1[3] * ys, wz = q1[3] * zs;
Double_t xx = q1[0] * xs, xy = q1[0] * ys, xz = q1[0] * zs;
Double_t yy = q1[1] * ys, yz = q1[1] * zs, zz = q1[2] * zs;
NewObj[0] = 1.0f - (yy + zz); NewObj[3] = xy - wz; NewObj[6] = xz + wy;
NewObj[1] = xy + wz; NewObj[4] = 1.0f - (xx + zz); NewObj[7] = yz - wx;
NewObj[2] = xz - wy; NewObj[5] = yz + wx; NewObj[8] = 1.0f - (xx + yy);
}
/**
* Sets the value of this matrix to the result of multiplying itself
* with matrix m1.
* @param m1 the other matrix
*/
void Matrix3dMulMatrix3d(Double_t * NewObj, const Double_t * m1)
{
Double_t Result[9];
Result[0] = (NewObj[0] * m1[0]) + (NewObj[3] * m1[1]) + (NewObj[6] * m1[2]);
Result[3] = (NewObj[0] * m1[3]) + (NewObj[3] * m1[4]) + (NewObj[6] * m1[5]);
Result[6] = (NewObj[0] * m1[6]) + (NewObj[3] * m1[7]) + (NewObj[6] * m1[8]);
Result[1] = (NewObj[1] * m1[0]) + (NewObj[4] * m1[1]) + (NewObj[7] * m1[2]);
Result[4] = (NewObj[1] * m1[3]) + (NewObj[4] * m1[4]) + (NewObj[7] * m1[5]);
Result[7] = (NewObj[1] * m1[6]) + (NewObj[4] * m1[7]) + (NewObj[7] * m1[8]);
Result[2] = (NewObj[2] * m1[0]) + (NewObj[5] * m1[1]) + (NewObj[8] * m1[2]);
Result[5] = (NewObj[2] * m1[3]) + (NewObj[5] * m1[4]) + (NewObj[8] * m1[5]);
Result[8] = (NewObj[2] * m1[6]) + (NewObj[5] * m1[7]) + (NewObj[8] * m1[8]);
//copy result back to this
for(Int_t i = 0; i < 9; ++i)
NewObj[i] = Result[i];
}
inline void Matrix4dSetRotationScaleFromMatrix4d(Double_t * NewObj, const Double_t * m1)
{
NewObj[0] = m1[0]; NewObj[4] = m1[4]; NewObj[8] = m1[8];
NewObj[1] = m1[1]; NewObj[5] = m1[5]; NewObj[9] = m1[9];
NewObj[2] = m1[2]; NewObj[6] = m1[6]; NewObj[10] = m1[10];
}
/**
* Performs SVD on this matrix and gets scale and rotation.
* Rotation is placed into rot3, and rot4.
* @param rot3 the rotation factor(Matrix3d). if null, ignored
* @param rot4 the rotation factor(Matrix4) only upper 3x3 elements are changed. if null, ignored
* @return scale factor
*/
//inline Float_t Matrix4fSVD(const Matrix4fT * NewObj, Matrix3fT * rot3, Matrix4fT * rot4)
inline Double_t Matrix4fSVD(const Double_t * NewObj, Double_t * rot3, Double_t * rot4)
{
Double_t s = TMath::Sqrt(
( (NewObj[0] * NewObj[0]) + (NewObj[1] * NewObj[1]) + (NewObj[2] * NewObj[2]) +
(NewObj[4] * NewObj[4]) + (NewObj[5] * NewObj[5]) + (NewObj[6] * NewObj[6]) +
(NewObj[8] * NewObj[8]) + (NewObj[9] * NewObj[9]) + (NewObj[10] * NewObj[10]) ) / 3.0f );
if (rot3){
rot3[0] = NewObj[0]; rot3[1] = NewObj[1]; rot3[2] = NewObj[2];
rot3[3] = NewObj[4]; rot3[4] = NewObj[5]; rot3[5] = NewObj[6];
rot3[6] = NewObj[8]; rot3[7] = NewObj[9]; rot3[8] = NewObj[10];
// zero-div may occur.
Double_t n = 1. / TMath::Sqrt(NewObj[0] * NewObj[0] + NewObj[1] * NewObj[1] + NewObj[2] * NewObj[2] + 0.0001);
rot3[0] *= n;
rot3[1] *= n;
rot3[2] *= n;
n = 1. / TMath::Sqrt(NewObj[4] * NewObj[4] + NewObj[5] * NewObj[5] + NewObj[6] * NewObj[6] + 0.0001);
rot3[3] *= n;
rot3[4] *= n;
rot3[5] *= n;
n = 1.0f / TMath::Sqrt(NewObj[8] * NewObj[8] + NewObj[9] * NewObj[9] + NewObj[10] * NewObj[10] + 0.0001);
rot3[6] *= n;
rot3[7] *= n;
rot3[8] *= n;
}
if (rot4)
{
if (rot4 != NewObj)
Matrix4dSetRotationScaleFromMatrix4d(rot4, NewObj);
Double_t n = 1. / TMath::Sqrt(NewObj[0] * NewObj[0] + NewObj[1] * NewObj[1] + NewObj[2] * NewObj[2] + 0.0001);
rot4[0] *= n;
rot4[1] *= n;
rot4[2] *= n;
n = 1. / TMath::Sqrt(NewObj[4] * NewObj[4] + NewObj[5] * NewObj[5] + NewObj[6] * NewObj[6] + 0.0001);
rot4[4] *= n;
rot4[5] *= n;
rot4[6] *= n;
n = 1. / TMath::Sqrt(NewObj[8] * NewObj[8] + NewObj[9] * NewObj[9] + NewObj[10] * NewObj[10] + 0.0001);
rot4[8] *= n;
rot4[9] *= n;
rot4[10] *= n;
}
return s;
}
//inline void Matrix4fSetRotationScaleFromMatrix3f(Matrix4fT * NewObj, const Matrix3fT * m1)
inline void Matrix4dSetRotationScaleFromMatrix3d(Double_t * NewObj, const Double_t * m1)
{
NewObj[0] = m1[0]; NewObj[4] = m1[3]; NewObj[8] = m1[6];
NewObj[1] = m1[1]; NewObj[5] = m1[4]; NewObj[9] = m1[7];
NewObj[2] = m1[2]; NewObj[6] = m1[5]; NewObj[10] = m1[8];
}
//inline void Matrix4fMulRotationScale(Matrix4fT * NewObj, Float_t scale)
inline void Matrix4dMulRotationScale(Double_t * NewObj, Double_t scale)
{
NewObj[0] *= scale; NewObj[4] *= scale; NewObj[8] *= scale;
NewObj[1] *= scale; NewObj[5] *= scale; NewObj[9] *= scale;
NewObj[2] *= scale; NewObj[6] *= scale; NewObj[10] *= scale;
}
//void Matrix4fSetRotationFromMatrix3f(Matrix4fT * NewObj, const Matrix3fT * m1)
void Matrix4dSetRotationFromMatrix3d(Double_t * NewObj, const Double_t * m1)
{
Double_t scale = Matrix4fSVD(NewObj, 0, 0);
Matrix4dSetRotationScaleFromMatrix3d(NewObj, m1);
Matrix4dMulRotationScale(NewObj, scale);
}
inline void TArcBall::MapToSphere(const TPoint & NewPt, Double_t * NewVec) const
{
Double_t TempPt[] = {NewPt.fX, NewPt.fY};
//Adjust point coords and scale down to range of [-1 ... 1]
TempPt[0] = TempPt[0] * fAdjustWidth - 1.;
TempPt[1] = 1. - TempPt[1] * fAdjustHeight;
//Compute the square of the length of the vector to the point from the center
Double_t length = TempPt[0] * TempPt[0] + TempPt[1] * TempPt[1];
//If the point is mapped outside of the sphere... (length > radius squared)
if (length > 1.)
{
Double_t norm = 1.0f / TMath::Sqrt(length);
//Return the "normalized" vector, a point on the sphere
NewVec[0] = TempPt[0] * norm;
NewVec[1] = TempPt[1] * norm;
NewVec[2] = 0.;
}
else //Else it's on the inside
{
//Return a vector to a point mapped inside the sphere sqrt(radius squared - length)
NewVec[0] = TempPt[0];
NewVec[1] = TempPt[1];
NewVec[2] = TMath::Sqrt(1. - length);
}
}
TArcBall::TArcBall(UInt_t Width, UInt_t Height)
:fThisRot(), fLastRot(),
fTransform(), fStVec(),
fEnVec(), fAdjustWidth(0.),
fAdjustHeight(0.)
{
SetBounds(Width, Height);
ResetMatrices();
}
//Mouse down
void TArcBall::Click(const TPoint & NewPt)
{
MapToSphere(NewPt, fStVec);
for(Int_t i = 0; i < 9; ++i)
fLastRot[i] = fThisRot[i];
}
//Mouse drag, calculate rotation
void TArcBall::Drag(const TPoint & NewPt)
{
MapToSphere(NewPt, fEnVec);
//Return the quaternion equivalent to the rotation
Double_t NewRot[4] = {0.};
Double_t Perp[3] = {0.};
Vector3dCross(Perp, fStVec, fEnVec);
//Compute the length of the perpendicular vector
if (Vector3dLength(Perp) > Epsilon){
//We're ok, so return the perpendicular vector as the transform after all
NewRot[0] = Perp[0];
NewRot[1] = Perp[1];
NewRot[2] = Perp[2];
//In the quaternion values, w is cosine (theta / 2), where theta is rotation angle
NewRot[3]= Vector3dDot(fStVec, fEnVec);
}
else //if it's zero
NewRot[0] = NewRot[1] = NewRot[2] = NewRot[3] = 0.;
Matrix3dSetRotationFromQuat4d(fThisRot, NewRot);
Matrix3dMulMatrix3d(fThisRot, fLastRot);
Matrix4dSetRotationFromMatrix3d(fTransform, fThisRot);
// std::cout<<"KyKy\n";
}
Double_t * TArcBall::GetRotMatrix()
{
return fTransform;
}
void TArcBall::ResetMatrices()
{
fTransform[0] = 1.f, fTransform[1] = fTransform[2] = fTransform[3] =
fTransform[4] = 0.f, fTransform[5] = 1.f, fTransform[6] = fTransform[7] =
fTransform[8] = fTransform[9] = 0.f, fTransform[10] = 1.f, fTransform[11] =
fTransform[12] = fTransform[13] = fTransform[14] = 0.f, fTransform[15] = 1.f;
Matrix3dSetIdentity(fLastRot);
Matrix3dSetIdentity(fThisRot);
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment