Skip to content
Snippets Groups Projects
Commit 43aac3fb authored by Guilherme Amadio's avatar Guilherme Amadio Committed by Danilo Piparo
Browse files

[TMVA] Allow different matrix types in maximumRelativeError()

parent 52be6458
No related branches found
No related tags found
No related merge requests found
#ifndef TMVA_TEST_DNN_UTILITY #ifndef TMVA_TEST_DNN_UTILITY
#define TMVA_TEST_DNN_UTILITY #define TMVA_TEST_DNN_UTILITY
#include <cassert>
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>
#include <type_traits> #include <type_traits>
...@@ -172,64 +173,48 @@ AFloat reduceMean(F f, AFloat start, const AMatrix &X) ...@@ -172,64 +173,48 @@ AFloat reduceMean(F f, AFloat start, const AMatrix &X)
return result / (AFloat) (m * n); return result / (AFloat) (m * n);
} }
/** Compute the relative error of x and y normalized by y. Specialized for /** Compute the relative error of x and y */
* float and double to make sure both arguments are above expected machine
* precision (1e-5 and 1e-10). */
//______________________________________________________________________________ //______________________________________________________________________________
template <typename AFloat> template <typename T>
inline AFloat relativeError(const AFloat &x, inline T relativeError(const T &x, const T &y)
const AFloat &y); {
using std::abs;
if (x == y)
return T(0.0);
//______________________________________________________________________________ T diff = abs(x - y);
template <>
inline Double_t relativeError(const Double_t &x,
const Double_t &y)
{
if ((std::abs(x) > 1e-10) && (std::abs(y) > 1e-10)) {
return std::fabs((x - y) / y);
} else {
return std::fabs(x - y);
}
}
//______________________________________________________________________________ if (x * y == T(0.0) ||
template <> diff < std::numeric_limits<T>::epsilon())
inline Real_t relativeError(const Real_t &x, return diff;
const Real_t &y)
{ return diff / (abs(x) + abs(y));
if ((std::abs(x) > 1e-5) && (std::abs(y) > 1e-5)) {
return std::fabs((x - y) / y);
} else {
return std::fabs(x - y);
}
} }
/*! Compute the maximum, element-wise relative error of the matrices /*! Compute the maximum, element-wise relative error of the matrices
* X and Y normalized by the element of Y. Protected against division * X and Y normalized by the element of Y. Protected against division
* by zero. */ * by zero. */
//______________________________________________________________________________ //______________________________________________________________________________
template <typename AMatrix> template <typename Matrix1, typename Matrix2>
auto maximumRelativeError(const AMatrix &X, auto maximumRelativeError(const Matrix1 &X, const Matrix2 &Y) -> decltype(X(0,0))
const AMatrix &Y)
-> decltype(X(0,0))
{ {
decltype(X(0,0)) curError, maxError = 0.0;
using AFloat = decltype(X(0,0)); size_t m = X.GetNrows();
size_t n = X.GetNcols();
size_t m,n;
m = X.GetNrows();
n = X.GetNcols();
AFloat maximumError = 0.0; assert(m == Y.GetNrows());
assert(n == Y.GetNcols());
for (size_t i = 0; i < m; i++) { for (size_t i = 0; i < m; i++) {
for (size_t j = 0; j < n; j++) { for (size_t j = 0; j < n; j++) {
AFloat error = relativeError(X(i,j), Y(i,j)); curError = relativeError(X(i,j), Y(i,j));
maximumError = std::max(error, maximumError); maxError = std::max(curError, maxError);
} }
} }
return maximumError;
return maxError;
} }
/*! Numerically compute the derivative of the functional f using finite /*! Numerically compute the derivative of the functional f using finite
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment