-
Axel Naumann authored
using namespace std; from Riostream.h, which has huge consequences for all of ROOT. Riostream.h is now a simple wrapper for fstream, iostream, iomanip for backward compatibility; Riosfwd.h simply wraps iosfwd. Because of templates and their inline functions, Riostream.h needed to be included in headers, too (e.g. TParameter.h), which violated the assumption that Riostream.h is not exposing its using namespace std to headers. ROOT now requires R__ANSISTREAM, R__SSTREAM, which does not change the set of supported compilers. Without "using namespace std", several identifiers are now prefixed by std::; e.g. roofit/* source files now have a using namespace std to keep their coding style. TFile::MakeProject() now generates "using namespace std" to convert the CINT-style class names into C++ ones. git-svn-id: http://root.cern.ch/svn/root/trunk@44507 27541ba8-7e3a-0410-8455-c3a389f83636
Axel Naumann authoredusing namespace std; from Riostream.h, which has huge consequences for all of ROOT. Riostream.h is now a simple wrapper for fstream, iostream, iomanip for backward compatibility; Riosfwd.h simply wraps iosfwd. Because of templates and their inline functions, Riostream.h needed to be included in headers, too (e.g. TParameter.h), which violated the assumption that Riostream.h is not exposing its using namespace std to headers. ROOT now requires R__ANSISTREAM, R__SSTREAM, which does not change the set of supported compilers. Without "using namespace std", several identifiers are now prefixed by std::; e.g. roofit/* source files now have a using namespace std to keep their coding style. TFile::MakeProject() now generates "using namespace std" to convert the CINT-style class names into C++ ones. git-svn-id: http://root.cern.ch/svn/root/trunk@44507 27541ba8-7e3a-0410-8455-c3a389f83636
stressSpectrum.cxx 9.99 KiB
// @(#)root/test:$name: $:$id: stressSpectrum.cxx,v 1.15 2002/10/25 10:47:51 rdm exp $
// Author: Rene Brun 17/01/2006
/////////////////////////////////////////////////////////////////
//
// TSPectrum test suite
// ====================
//
// This stress program tests many elements of the TSpectrum, TSpectrum2 classes.
//
// To run in batch, do
// stressSpectrum : run 100 experiments with graphics (default)
// stressSpectrum 1000 : run 1000 experiments with graphics
// stressSpectrum -b 200 : run 200 experiments in batch mode
// stressSpectrum -b : run 100 experiments in batch mode
//
// To run interactively, do
// root -b
// Root > .x stressSpectrum.cxx : run 100 experiments with graphics (default)
// Root > .x stressSpectrum.cxx(20) : run 20 experiments
// Root > .x stressSpectrum.cxx+(30) : run 30 experiments via ACLIC
//
// Several tests are run sequentially. Each test will produce one line (Test OK or Test FAILED) .
// At the end of the test a table is printed showing the global results
// Real Time and Cpu Time.
// One single number (ROOTMARKS) is also calculated showing the relative
// performance of your machine compared to a reference machine
// a Pentium IV 3.0 Ghz) with 512 MBytes of memory
// and 120 GBytes IDE disk.
//
// An example of output when all the tests run OK is shown below:
//
//////////////////////////////////////////////////////////////////////////
// //
//****************************************************************************
//* Starting stress S P E C T R U M *
//****************************************************************************
//Peak1 : found = 70.21/ 73.75, good = 65.03/ 68.60, ghost = 8.54/ 8.39,--- OK
//Peak2 : found =163/300, good =163, ghost =8,---------------------------- OK
//****************************************************************************
//stressSpectrum: Real Time = 19.86 seconds Cpu Time = 19.04 seconds
//****************************************************************************
//* ROOTMARKS = 810.9 * Root5.09/01 20051216/1229
//****************************************************************************
#include <stdlib.h>
#include "TApplication.h"
#include "TBenchmark.h"
#include "TCanvas.h"
#include "TH2.h"
#include "TF2.h"
#include "TRandom.h"
#include "TSpectrum.h"
#include "TSpectrum2.h"
#include "TStyle.h"
#include "Riostream.h"
#include "TROOT.h"
#include "TMath.h"
Int_t npeaks;
Double_t fpeaks(Double_t *x, Double_t *par) {
Double_t result = par[0] + par[1]*x[0];
for (Int_t p=0;p<npeaks;p++) {
Double_t norm = par[3*p+2];
Double_t mean = par[3*p+3];
Double_t sigma = par[3*p+4];
result += norm*TMath::Gaus(x[0],mean,sigma);
}
return result;
}
Double_t fpeaks2(Double_t *x, Double_t *par) {
Double_t result = 0.1;
for (Int_t p=0;p<npeaks;p++) {
Double_t norm = par[5*p+0];
Double_t mean1 = par[5*p+1];
Double_t sigma1 = par[5*p+2];
Double_t mean2 = par[5*p+3];
Double_t sigma2 = par[5*p+4];
result += norm*TMath::Gaus(x[0],mean1,sigma1)*TMath::Gaus(x[1],mean2,sigma2);
}
return result;
}
void findPeaks(Int_t pmin, Int_t pmax, Int_t &nfound, Int_t &ngood, Int_t &nghost) {
npeaks = (Int_t)gRandom->Uniform(pmin,pmax);
Int_t nbins = 500;
Double_t dxbins = 2;
TH1F *h = new TH1F("h","test",nbins,0,nbins*dxbins);
//generate n peaks at random
Double_t par[3000];
par[0] = 0.8;
par[1] = -0.6/1000;
Int_t p,pf;
for (p=0;p<npeaks;p++) {
par[3*p+2] = 1;
par[3*p+3] = 10+gRandom->Rndm()*(nbins-20)*dxbins;
par[3*p+4] = 3+2*gRandom->Rndm();
}
TF1 *f = new TF1("f",fpeaks,0,nbins*dxbins,2+3*npeaks);
f->SetNpx(1000);
f->SetParameters(par);
h->FillRandom("f",200000);
TSpectrum *s = new TSpectrum(4*npeaks);
nfound = s->Search(h,2,"goff");
//Search found peaks
ngood = 0;
Float_t *xpeaks = s->GetPositionX();
for (p=0;p<npeaks;p++) {
for (Int_t pf=0;pf<nfound;pf++) {
Double_t dx = TMath::Abs(xpeaks[pf] - par[3*p+3]);
if (dx <dxbins) ngood++;
}
}
//Search ghost peaks
nghost = 0;
for (pf=0;pf<nfound;pf++) {
Int_t nf=0;
for (Int_t p=0;p<npeaks;p++) {
Double_t dx = TMath::Abs(xpeaks[pf] - par[3*p+3]);
if (dx <dxbins) nf++;
}
if (nf == 0) nghost++;
}
delete f;
delete h;
delete s;
}
void stress1(Int_t ntimes) {
Int_t pmin = 5;
Int_t pmax = 55;
TCanvas *c1 = new TCanvas("c1","Spectrum results",10,10,800,800);
c1->Divide(2,2);
gStyle->SetOptFit();
TH1F *hpeaks = new TH1F("hpeaks","Number of peaks",pmax-pmin,pmin,pmax);
TH1F *hfound = new TH1F("hfound","% peak founds",100,0,100);
TH1F *hgood = new TH1F("hgood", "% good peaks",100,0,100);
TH1F *hghost = new TH1F("hghost","% ghost peaks",100,0,100);
Int_t nfound,ngood,nghost;
for (Int_t i=0;i<ntimes;i++) {
findPeaks(pmin,pmax,nfound,ngood,nghost);
hpeaks->Fill(npeaks);
hfound->Fill(100*Double_t(nfound)/Double_t(npeaks));
hgood->Fill(100*Double_t(ngood)/Double_t(npeaks));
hghost->Fill(100*Double_t(nghost)/Double_t(npeaks));
//printf("npeaks = %d, nfound = %d, ngood = %d, nghost = %d\n",npeaks,nfound,ngood,nghost);
}
c1->cd(1);
hpeaks->Fit("pol1","lq");
c1->cd(2);
hfound->Fit("gaus","lq");
c1->cd(3);
hgood->Fit("gaus","lq");
c1->cd(4);
hghost->Fit("gaus","lq","",0,30);
c1->cd();
Double_t p1 = hfound->GetFunction("gaus")->GetParameter(1);
Double_t ep1 = hfound->GetFunction("gaus")->GetParError(1);
Double_t p2 = hgood->GetFunction("gaus")->GetParameter(1);
Double_t ep2 = hgood->GetFunction("gaus")->GetParError(1);
Double_t p3 = hghost->GetFunction("gaus")->GetParameter(1);
Double_t ep3 = hghost->GetFunction("gaus")->GetParError(1);
Double_t p1ref = 70.21; //ref numbers obtained with ntimes=1000
Double_t p2ref = 65.03;
Double_t p3ref = 8.54;
//printf("p1=%g+-%g, p2=%g+-%g, p3=%g+-%g\n",p1,ep1,p2,ep2,p3,ep3);
char sok[20];
if (TMath::Abs(p1ref-p1) < 2*ep1 && TMath::Abs(p2ref-p2) < 2*ep2 && TMath::Abs(p3ref-p3) < 2*ep3 ) {
snprintf(sok,20,"OK");
} else {
snprintf(sok,20,"failed");
}
printf("Peak1 : found =%6.2f/%6.2f, good =%6.2f/%6.2f, ghost =%5.2f/%5.2f,--- %s\n",
p1,p1ref,p2,p2ref,p3,p3ref,sok);
}
void stress2(Int_t np2) {
npeaks = np2;
TRandom r;
Int_t nbinsx = 200;
Int_t nbinsy = 200;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbinsx;
Double_t ymin = 0;
Double_t ymax = (Double_t)nbinsy;
Double_t dx = (xmax-xmin)/nbinsx;
Double_t dy = (ymax-ymin)/nbinsy;
TH2F *h2 = new TH2F("h2","test",nbinsx,xmin,xmax,nbinsy,ymin,ymax);
h2->SetStats(0);
//generate n peaks at random
Double_t par[3000];
Int_t p;
for (p=0;p<npeaks;p++) {
par[5*p+0] = r.Uniform(0.2,1);
par[5*p+1] = r.Uniform(xmin,xmax);
par[5*p+2] = r.Uniform(dx,5*dx);
par[5*p+3] = r.Uniform(ymin,ymax);
par[5*p+4] = r.Uniform(dy,5*dy);
}
TF2 *f2 = new TF2("f2",fpeaks2,xmin,xmax,ymin,ymax,5*npeaks);
f2->SetNpx(100);
f2->SetNpy(100);
f2->SetParameters(par);
h2->FillRandom("f2",500000);
//now the real stuff
TSpectrum2 *s = new TSpectrum2(2*npeaks);
Int_t nfound = s->Search(h2,2,"goff noMarkov");
//searching good and ghost peaks (approximation)
Int_t pf,ngood = 0;
Float_t *xpeaks = s->GetPositionX();
Float_t *ypeaks = s->GetPositionY();
for (p=0;p<npeaks;p++) {
for (Int_t pf=0;pf<nfound;pf++) {
Double_t diffx = TMath::Abs(xpeaks[pf] - par[5*p+1]);
Double_t diffy = TMath::Abs(ypeaks[pf] - par[5*p+3]);
if (diffx < 2*dx && diffy < 2*dy) ngood++;
}
}
if (ngood > nfound) ngood = nfound;
//Search ghost peaks (approximation)
Int_t nghost = 0;
for (pf=0;pf<nfound;pf++) {
Int_t nf=0;
for (Int_t p=0;p<npeaks;p++) {
Double_t diffx = TMath::Abs(xpeaks[pf] - par[5*p+1]);
Double_t diffy = TMath::Abs(ypeaks[pf] - par[5*p+3]);
if (diffx < 2*dx && diffy < 2*dy) nf++;
}
if (nf == 0) nghost++;
}
delete s;
delete f2;
delete h2;
Int_t nfoundRef = 163;
Int_t ngoodRef = 163;
Int_t nghostRef = 8;
char sok[20];
if ( TMath::Abs(nfound - nfoundRef) < 5
&& TMath::Abs(ngood - ngoodRef) < 5
&& TMath::Abs(nghost - nghostRef) < 5) {
snprintf(sok,20,"OK");
} else {
snprintf(sok,20,"failed");
}
printf("Peak2 : found =%d/%d, good =%d, ghost =%2d,---------------------------- %s\n",
nfound,npeaks,ngood,nghost,sok);
}
#ifndef __CINT__
void stressSpectrum(Int_t ntimes) {
#else
void stressSpectrum(Int_t ntimes=100) {
#endif
std::cout << "****************************************************************************" <<std::endl;
std::cout << "* Starting stress S P E C T R U M *" <<std::endl;
std::cout << "****************************************************************************" <<std::endl;
gBenchmark->Start("stressSpectrum");
stress1(ntimes);
stress2(300);
gBenchmark->Stop ("stressSpectrum");
Double_t reftime100 = 19.04; //pcbrun compiled
Double_t ct = gBenchmark->GetCpuTime("stressSpectrum");
const Double_t rootmarks = 800*reftime100*ntimes/(100*ct);
printf("****************************************************************************\n");
gBenchmark->Print("stressSpectrum");
printf("****************************************************************************\n");
printf("* ROOTMARKS =%6.1f * Root%-8s %d/%d\n",rootmarks,gROOT->GetVersion(),
gROOT->GetVersionDate(),gROOT->GetVersionTime());
printf("****************************************************************************\n");
}
#ifndef __CINT__
int main(int argc, char **argv)
{
TApplication theApp("App", &argc, argv);
gROOT->SetBatch();
gBenchmark = new TBenchmark();
Int_t ntimes = 100;
if (argc > 1) ntimes = atoi(argv[1]);
stressSpectrum(ntimes);
return 0;
}
#endif