-
Lorenzo Moneta authored
new statistical function in ROOT::Mathh landau_quantile (inverse of landau cumulative distribution) translated from RANLAN - added also the landau_quantile_c - first and second momentum function of the truncated landau landau_xm1 landau_xm2 - sin and cosine integral in SpecFunc.h from CERNLIN (http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/c336/top.html) ROOT::Math::sinint(x) and ROOT::Math::cosint(x) - update stressMathCore with landau git-svn-id: http://root.cern.ch/svn/root/trunk@33348 27541ba8-7e3a-0410-8455-c3a389f83636
Lorenzo Moneta authorednew statistical function in ROOT::Mathh landau_quantile (inverse of landau cumulative distribution) translated from RANLAN - added also the landau_quantile_c - first and second momentum function of the truncated landau landau_xm1 landau_xm2 - sin and cosine integral in SpecFunc.h from CERNLIN (http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/c336/top.html) ROOT::Math::sinint(x) and ROOT::Math::cosint(x) - update stressMathCore with landau git-svn-id: http://root.cern.ch/svn/root/trunk@33348 27541ba8-7e3a-0410-8455-c3a389f83636
stressMathMore.cxx 17.10 KiB
// @(#)root/test:$Id$
// Author: Lorenzo Moneta 06/2005
///////////////////////////////////////////////////////////////////////////////////
//
// MathMore Benchmark test suite
// ==============================
//
// This program performs tests :
// - numerical integration, derivation and root finders
// - it compares for various values of the gamma and beta distribution)
// - the numerical calculated integral of pdf with cdf function,
// - the calculated derivative of cdf with pdf
// - the inverse (using root finder) of cdf with quantile
//
// to run the program outside ROOT do:
// > make stressMathMore
// > ./stressMathMore
//
// to run the program in ROOT
// root> gSystem->Load("libMathMore")
// root> .x stressMathMore.cxx+
//
#include "Math/DistFunc.h"
#include "Math/IParamFunction.h"
#include "Math/Integrator.h"
#include "Math/Derivator.h"
#include "Math/Functor.h"
#include "Math/RootFinderAlgorithms.h"
#include "Math/RootFinder.h"
#include <iostream>
#include <iomanip>
#include <limits>
#include <cmath>
#include <stdlib.h>
#include "TBenchmark.h"
#include "TROOT.h"
#include "TRandom3.h"
#include "TSystem.h"
#include "TF1.h"
using namespace ROOT::Math;
#ifdef __CINT__
#define INF 1.7E308
#else
#define INF std::numeric_limits<double>::infinity()
#endif
//#define DEBUG
bool debug = true; // print out reason of test failures
bool removeFiles = false; // remove Output root files
void PrintTest(std::string name) {
std::cout << std::left << std::setw(40) << name;
}
void PrintStatus(int iret) {
if (iret == 0)
std::cout <<"\t\t................ OK" << std::endl;
else
std::cout <<"\t\t............ FAILED " << std::endl;
}
int compare( std::string name, double v1, double v2, double scale = 2.0) {
// ntest = ntest + 1;
//std::cout << std::setw(50) << std::left << name << ":\t";
// numerical double limit for epsilon
double eps = scale* std::numeric_limits<double>::epsilon();
int iret = 0;
double delta = v2 - v1;
double d = 0;
if (delta < 0 ) delta = - delta;
if (v1 == 0 || v2 == 0) {
if (delta > eps ) {
iret = 1;
}
}
// skip case v1 or v2 is infinity
else {
d = v1;
if ( v1 < 0) d = -d;
// add also case when delta is small by default
if ( delta/d > eps && delta > eps )
iret = 1;
}
if (iret) {
if (debug) {
int pr = std::cout.precision (18);
std::cout << "\nDiscrepancy in " << name.c_str() << "() :\n " << v1 << " != " << v2 << " discr = " << int(delta/d/eps)
<< " (Allowed discrepancy is " << eps << ")\n\n";
std::cout.precision (pr);
//nfail = nfail + 1;
}
}
//else
// std::cout <<".";
return iret;
}
// typedef for a free function like gamma(double x, double a, double b)
// (dont have blank spaces between for not confusing CINT parser)
typedef double (*FreeFunc3)(double, double, double );
typedef double (*FreeFunc4)(double, double, double, double );
//implement simple functor
struct Func {
virtual ~Func() {}
virtual double operator() (double , double, double) const = 0;
};
struct Func3 : public Func {
Func3(FreeFunc3 f) : fFunc(f) {};
double operator() (double x, double a, double b) const {
return fFunc(x,a,b);
}
FreeFunc3 fFunc;
};
struct Func4 : public Func {
Func4(FreeFunc4 f) : fFunc(f) {};
double operator() (double x, double a, double b) const {
return fFunc(x,a,b,0.);
}
FreeFunc4 fFunc;
};
// statistical function class
const int NPAR = 2;
class StatFunction : public ROOT::Math::IParamFunction {
public:
StatFunction(Func & pdf, Func & cdf, Func & quant,
double x1 = -INF,
double x2 = INF ) :
fPdf(&pdf), fCdf(&cdf), fQuant(&quant),
xlow(x1), xup(x2),
fHasLowRange(false), fHasUpRange(false)
{
fScaleIg = 10; //scale for integral test
fScaleDer = 1; //scale for der test
fScaleInv = 100; //scale for inverse test
for(int i = 0; i< NPAR; ++i) fParams[i]=0;
NFuncTest = 100;
if (xlow > -INF) fHasLowRange = true;
if (xup < INF) fHasUpRange = true;
}
unsigned int NPar() const { return NPAR; }
const double * Parameters() const { return fParams; }
ROOT::Math::IGenFunction * Clone() const { return new StatFunction(*fPdf,*fCdf,*fQuant); }
void SetParameters(const double * p) { std::copy(p,p+NPAR,fParams); }
void SetParameters(double p0, double p1) { *fParams = p0; *(fParams+1) = p1; }
void SetTestRange(double x1, double x2) { xmin = x1; xmax = x2; }
void SetNTest(int n) { NFuncTest = n; }
void SetStartRoot(double x) { fStartRoot =x; }
double Pdf(double x) const {
return (*this)(x);
}
double Cdf(double x) const {
return (*fCdf) ( x, fParams[0], fParams[1] );
}
double Quantile(double x) const {
return (*fQuant)( x, fParams[0], fParams[1] );
}
// test integral with cdf function
int TestIntegral(IntegrationOneDim::Type algotype);
// test derivative from cdf to pdf function
int TestDerivative();
// test root finding algorithm for finding inverse of cdf
int TestInverse1(RootFinder::EType algotype);
// test root finding algorithm for finding inverse of cdf using drivatives
int TestInverse2(RootFinder::EType algotype);
void SetScaleIg(double s) { fScaleIg = s; }
void SetScaleDer(double s) { fScaleDer = s; }
void SetScaleInv(double s) { fScaleInv = s; }
private:
double DoEvalPar(double x, const double * ) const {
// use esplicity cached param values
return (*fPdf)(x, *fParams, *(fParams+1));
}
// std::auto_ptr<Func> fPdf;
// std::auto_ptr<Func> fCdf;
// std::auto_ptr<Func> fQuant;
Func * fPdf;
Func * fCdf;
Func * fQuant;
double fParams[NPAR];
double fScaleIg;
double fScaleDer;
double fScaleInv;
int NFuncTest;
double xmin;
double xmax;
double xlow;
double xup;
bool fHasLowRange;
bool fHasUpRange;
double fStartRoot;
};
// test integral of function
int StatFunction::TestIntegral(IntegrationOneDim::Type algoType = IntegrationOneDim::kADAPTIVESINGULAR) {
int iret = 0;
// scan all values from xmin to xmax
double dx = (xmax-xmin)/NFuncTest;
// create Integrator
Integrator ig(algoType, 1.E-12,1.E-12,100000);
ig.SetFunction(*this);
for (int i = 0; i < NFuncTest; ++i) {
double v1 = xmin + dx*i; // value used for testing
double q1 = Cdf(v1);
//std::cout << "v1 " << v1 << " pdf " << (*this)(v1) << " cdf " << q1 << " quantile " << Quantile(q1) << std::endl;
// calculate integral of pdf
double q2 = 0;
// lower integral (cdf)
if (!fHasLowRange)
q2 = ig.IntegralLow(v1);
else
q2 = ig.Integral(xlow,v1);
int r = ig.Status();
// use a larger scale (integral error is 10-9)
double err = ig.Error();
//std::cout << "integral result is = " << q2 << " error is " << err << std::endl;
// Gauss integral sometimes returns an error of 0
err = std::max(err, std::numeric_limits<double>::epsilon() );
double scale = std::max( fScaleIg * err / std::numeric_limits<double>::epsilon(), 1.);
r |= compare("test integral", q1, q2, scale );
if (r && debug) {
std::cout << "Failed test for x = " << v1 << " q1= " << q1 << " q2= " << q2 << " p = ";
for (int j = 0; j < NPAR; ++j) std::cout << fParams[j] << "\t";
std::cout << "ig error is " << err << " status " << ig.Status() << std::endl;
}
iret |= r;
}
return iret;
}
int StatFunction::TestDerivative() {
int iret = 0;
// scan all values from xmin to xmax
double dx = (xmax-xmin)/NFuncTest;
// create CDF function
Functor1D func(this, &StatFunction::Cdf);
Derivator d(func);
for (int i = 0; i < NFuncTest; ++i) {
double v1 = xmin + dx*i; // value used for testing
double q1 = Pdf(v1);
//std::cout << "v1 " << v1 << " pdf " << (*this)(v1) << " cdf " << q1 << " quantile " << Quantile(q1) << std::endl;
// calculate derivative of cdf
double q2 = 0;
if (fHasLowRange && v1 == xlow)
q2 = d.EvalForward(v1);
else if (fHasUpRange && v1 == xup)
q2 = d.EvalBackward(v1);
else
q2 = d.Eval(v1);
int r = d.Status();
double err = d.Error();
double scale = std::max(1.,fScaleDer * err / std::numeric_limits<double>::epsilon() );
r |= compare("test Derivative", q1, q2, scale );
if (r && debug) {
std::cout << "Failed test for x = " << v1 << " p = ";
for (int j = 0; j < NPAR; ++j) std::cout << fParams[j] << "\t";
std::cout << "der error is " << err << std::endl;
std::cout << d.Eval(v1) << "\t" << d.EvalForward(v1) << std::endl;
}
iret |= r;
}
return iret;
}
// function to be used in ROOT finding algorithm
struct InvFunc {
InvFunc(const StatFunction * f, double y) : fFunc(f), fY(y) {}
double operator() (double x) {
return fFunc->Cdf(x) - fY;
}
const StatFunction * fFunc;
double fY;
};
int StatFunction::TestInverse1(RootFinder::EType algoType) {
int iret = 0;
int maxitr = 2000;
double abstol = 1.E-15;
double reltol = 1.E-15;
//NFuncTest = 4;
// scan all values from 0.05 to 0.95 to avoid problem at the border of definitions
double x1 = 0.05; double x2 = 0.95;
double dx = (x2-x1)/NFuncTest;
double vmin = Quantile(dx/2);
double vmax = Quantile(1.-dx/2);
// test ROOT finder algorithm function without derivative
RootFinder rf1(algoType);
for (int i = 1; i < NFuncTest; ++i) {
double v1 = x1 + dx*i; // value used for testing
InvFunc finv(this,v1);
Functor1D func(finv);
rf1.SetFunction(func, vmin, vmax);
//std::cout << "\nfun values for :" << v1 << " f: " << func(0.0) << " " << func(1.0) << std::endl;
int ret = ! rf1.Solve(maxitr,abstol,reltol);
if (ret && debug) {
std::cout << "\nError in solving for inverse, niter = " << rf1.Iterations() << std::endl;
}
double q1 = rf1.Root();
// test that quantile value correspond:
double q2 = Quantile(v1);
ret |= compare("test Inverse1", q1, q2, fScaleInv );
if (ret && debug) {
std::cout << "\nFailed test for x = " << v1 << " p = ";
for (int j = 0; j < NPAR; ++j) std::cout << fParams[j] << "\t";
std::cout << std::endl;
}
iret |= ret;
}
return iret;
}
int StatFunction::TestInverse2(RootFinder::EType algoType) {
int iret = 0;
int maxitr = 2000;
// put lower tolerance
double abstol = 1.E-12;
double reltol = 1.E-12;
//NFuncTest = 10;
// scan all values from 0.05 to 0.95 to avoid problem at the border of definitions
double x1 = 0.05; double x2 = 0.95;
double dx = (x2-x1)/NFuncTest;
// starting root is always on the left to avoid to go negative
// it is very sensible at the starting point
double vstart = fStartRoot; //depends on function shape
// test ROOT finder algorithm function with derivative
RootFinder rf1(algoType);
//RootFinder<Roots::Secant> rf1;
for (int i = 1; i < NFuncTest; ++i) {
double v1 = x1 + dx*i; // value used for testing
InvFunc finv(this,v1);
//make a gradient function using inv function and derivative (which is pdf)
GradFunctor1D func(finv,*this);
// use as estimate the quantile at 0.5
//std::cout << "\nvstart : " << vstart << " fun/der values" << func(vstart) << " " << func.Derivative(vstart) << std::endl;
rf1.SetFunction(func,vstart );
int ret = !rf1.Solve(maxitr,abstol,reltol);
if (ret && debug) {
std::cout << "\nError in solving for inverse using derivatives, niter = " << rf1.Iterations() << std::endl;
}
double q1 = rf1.Root();
// test that quantile value correspond:
double q2 = Quantile(v1);
ret |= compare("test InverseDeriv", q1, q2, fScaleInv );
if (ret && debug) {
std::cout << "Failed test for x = " << v1 << " p = ";
for (int j = 0; j < NPAR; ++j) std::cout << fParams[j] << "\t";
std::cout << std::endl;
}
iret |= ret;
}
return iret;
}
// test intergal. derivative and inverse(Rootfinder)
int testGammaFunction(int n = 100) {
int iret = 0;
Func4 pdf(gamma_pdf);
Func4 cdf(gamma_cdf);
Func3 quantile(gamma_quantile);
StatFunction dist(pdf, cdf, quantile, 0.);
dist.SetNTest(n);
dist.SetTestRange(0.,10.);
dist.SetScaleDer(10); // few tests fail here
// vary shape of gamma parameter
for (int i =1; i <= 5; ++i) {
double k = std::pow(2.,double(i-1));
double theta = 2./double(i);
dist.SetParameters(k,theta);
if (k <=1 )
dist.SetStartRoot(0.1);
else
dist.SetStartRoot(k*theta-1.);
std::string name = "Gamma("+Util::ToString(int(k))+","+Util::ToString(theta)+") ";
std::cout << "\nTest " << name << " distribution\n";
int ret = 0;
PrintTest("\t test integral GSL adaptive");
ret = dist.TestIntegral(IntegrationOneDim::kADAPTIVESINGULAR);
PrintStatus(ret);
iret |= ret;
PrintTest("\t test integral Gauss");
dist.SetScaleIg(100); // relax for Gauss integral
ret = dist.TestIntegral(IntegrationOneDim::kGAUSS);
PrintStatus(ret);
iret |= ret;
PrintTest("\t test derivative");
ret = dist.TestDerivative();
PrintStatus(ret);
iret |= ret;
PrintTest("\t test inverse with GSL Brent method");
ret = dist.TestInverse1(RootFinder::kGSL_BRENT);
PrintStatus(ret);
iret |= ret;
PrintTest("\t test inverse with Steffenson algo");
ret = dist.TestInverse2(RootFinder::kGSL_STEFFENSON);
PrintStatus(ret);
iret |= ret;
PrintTest("\t test inverse with Brent method");
dist.SetNTest(10);
ret = dist.TestInverse1(RootFinder::kBRENT);
PrintStatus(ret);
iret |= ret;
}
return iret;
}
// test intergal. derivative and inverse(Rootfinder)
int testBetaFunction(int n = 100) {
int iret = 0;
Func3 pdf(beta_pdf);
Func3 cdf(beta_cdf);
Func3 quantile(beta_quantile);
StatFunction dist(pdf, cdf, quantile, 0.,1.);
dist.SetNTest(n);
dist.SetTestRange(0.,1.);
// vary shape of beta function parameters
for (int i = 0; i < 5; ++i) {
// avoid case alpha or beta = 1
double alpha = i+2;
double beta = 6-i;
dist.SetParameters(alpha,beta);
dist.SetStartRoot(alpha/(alpha+beta)); // use mean value
std::string name = "Beta("+Util::ToString(int(alpha))+","+Util::ToString(beta)+") ";
std::cout << "\nTest " << name << " distribution\n";
int ret = 0;
PrintTest("\t test integral GSL adaptive");
ret = dist.TestIntegral(IntegrationOneDim::kADAPTIVESINGULAR);
PrintStatus(ret);
iret |= ret;
PrintTest("\t test integral Gauss");
dist.SetScaleIg(100); // relax for Gauss integral
ret = dist.TestIntegral(IntegrationOneDim::kGAUSS);
PrintStatus(ret);
iret |= ret;
PrintTest("\t test derivative");
ret = dist.TestDerivative();
PrintStatus(ret);
iret |= ret;
PrintTest("\t test inverse with Brent method");
ret = dist.TestInverse1(RootFinder::kBRENT);
PrintStatus(ret);
iret |= ret;
PrintTest("\t test inverse with GSL Brent method");
ret = dist.TestInverse1(RootFinder::kGSL_BRENT);
PrintStatus(ret);
iret |= ret;
if (i < 5) { // test failed for k=5
PrintTest("\t test inverse with Steffenson algo");
ret = dist.TestInverse2(RootFinder::kGSL_STEFFENSON);
PrintStatus(ret);
iret |= ret;
}
}
return iret;
}
int stressMathMore(double nscale = 1) {
int iret = 0;
#ifdef __CINT__
std::cout << "Test must be run in compile mode - please use ACLIC !!" << std::endl;
return 0;
#endif
TBenchmark bm;
bm.Start("stressMathMore");
const int ntest = 10000;
int n = int(nscale*ntest);
//std::cout << "StressMathMore: test number n = " << n << std::endl;
iret |= testGammaFunction(n);
iret |= testBetaFunction(n);
bm.Stop("stressMathMore");
std::cout <<"******************************************************************************\n";
bm.Print("stressMathMore");
const double reftime = 7.24; //to be updated // ref time on pcbrun4
double rootmarks = 860 * reftime / bm.GetCpuTime("stressMathMore");
std::cout << " ROOTMARKS = " << rootmarks << " ROOT version: " << gROOT->GetVersion() << "\t"
<< gROOT->GetSvnBranch() << "@" << gROOT->GetSvnRevision() << std::endl;
std::cout <<"*******************************************************************************\n";
if (iret !=0) std::cerr << "stressMathMore Test Failed !!" << std::endl;
return iret;
}
int main(int argc,const char *argv[]) {
double nscale = 1;
if (argc > 1) {
nscale = atof(argv[1]);
//nscale = std::pow(10.0,double(scale));
}
return stressMathMore(nscale);
}