-
Axel Naumann authoredAxel Naumann authored
TUnixSystem.cxx 156.28 KiB
// @(#)root/unix:$Id: 887c618d89c4ed436e4034fc133f468fecad651b $
// Author: Fons Rademakers 15/09/95
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
// //
// TUnixSystem //
// //
// Class providing an interface to the UNIX Operating System. //
// //
//////////////////////////////////////////////////////////////////////////
#include "RConfigure.h"
#include <ROOT/RConfig.h>
#include "TUnixSystem.h"
#include "TROOT.h"
#include "TError.h"
#include "TOrdCollection.h"
#include "TRegexp.h"
#include "TPRegexp.h"
#include "TException.h"
#include "Demangle.h"
#include "TEnv.h"
#include "TSocket.h"
#include "Getline.h"
#include "TInterpreter.h"
#include "TApplication.h"
#include "TObjString.h"
#include "Riostream.h"
#include "TVirtualMutex.h"
#include "TObjArray.h"
#include <map>
#include <algorithm>
#include <atomic>
//#define G__OLDEXPAND
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#if defined(R__SUN) || defined(R__AIX) || \
defined(R__LINUX) || defined(R__SOLARIS) || \
defined(R__FBSD) || defined(R__OBSD) || \
defined(R__MACOSX) || defined(R__HURD)
#define HAS_DIRENT
#endif
#ifdef HAS_DIRENT
# include <dirent.h>
#else
# include <sys/dir.h>
#endif
#if defined(ULTRIX) || defined(R__SUN)
# include <sgtty.h>
#endif
#if defined(R__AIX) || defined(R__LINUX) || \
defined(R__FBSD) || defined(R__OBSD) || \
defined(R__LYNXOS) || defined(R__MACOSX) || defined(R__HURD)
# include <sys/ioctl.h>
#endif
#if defined(R__AIX) || defined(R__SOLARIS)
# include <sys/select.h>
#endif
#if defined(R__LINUX) || defined(R__HURD)
# ifndef SIGSYS
# define SIGSYS SIGUNUSED // SIGSYS does not exist in linux ??
# endif
#endif
#if defined(R__MACOSX)
# include <mach-o/dyld.h>
# include <sys/mount.h>
extern "C" int statfs(const char *file, struct statfs *buffer);
#elif defined(R__LINUX) || defined(R__HURD)
# include <sys/vfs.h>
#elif defined(R__FBSD) || defined(R__OBSD)
# include <sys/param.h>
# include <sys/mount.h>
#else
# include <sys/statfs.h>
#endif
#include <utime.h>
#include <syslog.h>
#include <sys/stat.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/param.h>
#include <pwd.h>
#include <grp.h>
#include <errno.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <time.h>
#include <sys/time.h>
#include <sys/file.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#if defined(R__AIX)
# define _XOPEN_EXTENDED_SOURCE
# include <arpa/inet.h>
# undef _XOPEN_EXTENDED_SOURCE
# if !defined(_AIX41) && !defined(_AIX43)
// AIX 3.2 doesn't have it
# define HASNOT_INETATON
# endif
#else
# include <arpa/inet.h>
#endif
#include <sys/un.h>
#include <netdb.h>
#include <fcntl.h>
#if defined(R__SOLARIS)
# include <sys/systeminfo.h>
# include <sys/filio.h>
# include <sys/sockio.h>
# define HASNOT_INETATON
# ifndef INADDR_NONE
# define INADDR_NONE (UInt_t)-1
# endif
#endif
#if defined(R__SOLARIS)
# define HAVE_UTMPX_H
# define UTMP_NO_ADDR
#endif
#if defined(MAC_OS_X_VERSION_10_5)
# define HAVE_UTMPX_H
# define UTMP_NO_ADDR
#endif
#if defined(R__FBSD)
# include <sys/param.h>
# if __FreeBSD_version >= 900007
# define HAVE_UTMPX_H
# endif
#endif
#if defined(R__AIX) || defined(R__FBSD) || \
defined(R__OBSD) || defined(R__LYNXOS) || \
(defined(R__MACOSX) && !defined(MAC_OS_X_VERSION_10_5))
# define UTMP_NO_ADDR
#endif
#if (defined(R__AIX) && !defined(_AIX43)) || \
(defined(R__SUNGCC3) && !defined(__arch64__))
# define USE_SIZE_T
#elif defined(R__GLIBC) || defined(R__FBSD) || \
(defined(R__SUNGCC3) && defined(__arch64__)) || \
defined(R__OBSD) || defined(MAC_OS_X_VERSION_10_4) || \
(defined(R__AIX) && defined(_AIX43)) || \
(defined(R__SOLARIS) && defined(_SOCKLEN_T))
# define USE_SOCKLEN_T
#endif
#if defined(R__LYNXOS)
extern "C" {
extern int putenv(const char *);
extern int inet_aton(const char *, struct in_addr *);
};
#endif
#ifdef HAVE_UTMPX_H
#include <utmpx.h>
#define STRUCT_UTMP struct utmpx
#else
#include <utmp.h>
#define STRUCT_UTMP struct utmp
#endif
#if !defined(UTMP_FILE) && defined(_PATH_UTMP) // 4.4BSD
#define UTMP_FILE _PATH_UTMP
#endif
#if defined(UTMPX_FILE) // Solaris, SysVr4
#undef UTMP_FILE
#define UTMP_FILE UTMPX_FILE
#endif
#ifndef UTMP_FILE
#define UTMP_FILE "/etc/utmp"
#endif
// stack trace code
#if (defined(R__LINUX) || defined(R__HURD)) && !defined(R__WINGCC)
# if __GLIBC__ == 2 && __GLIBC_MINOR__ >= 1
# define HAVE_BACKTRACE_SYMBOLS_FD
# endif
# define HAVE_DLADDR
#endif
#if defined(R__MACOSX)
# define HAVE_BACKTRACE_SYMBOLS_FD
# define HAVE_DLADDR
#endif
#ifdef HAVE_BACKTRACE_SYMBOLS_FD
# include <execinfo.h>
#endif
#ifdef HAVE_DLADDR
# ifndef __USE_GNU
# define __USE_GNU
# endif
# include <dlfcn.h>
#endif
#ifdef HAVE_BACKTRACE_SYMBOLS_FD
// The maximum stack trace depth for systems where we request the
// stack depth separately (currently glibc-based systems).
static const int kMAX_BACKTRACE_DEPTH = 128;
#endif
// FPE handling includes
#if (defined(R__LINUX) && !defined(R__WINGCC))
#include <fpu_control.h>
#include <fenv.h>
#include <sys/prctl.h> // for prctl() function used in StackTrace()
#endif
#if defined(R__MACOSX) && defined(__SSE2__)
#include <xmmintrin.h>
#endif
#if defined(R__MACOSX) && !defined(__SSE2__) && !defined(__xlC__) && \
!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__) && \
!defined(__arm64__)
#include <fenv.h>
#include <signal.h>
#include <ucontext.h>
#include <stdlib.h>
#include <stdio.h>
#include <mach/thread_status.h>
#define fegetenvd(x) asm volatile("mffs %0" : "=f" (x));
#define fesetenvd(x) asm volatile("mtfsf 255,%0" : : "f" (x));
enum {
FE_ENABLE_INEXACT = 0x00000008,
FE_ENABLE_DIVBYZERO = 0x00000010,
FE_ENABLE_UNDERFLOW = 0x00000020,
FE_ENABLE_OVERFLOW = 0x00000040,
FE_ENABLE_INVALID = 0x00000080,
FE_ENABLE_ALL_EXCEPT = 0x000000F8
};
#endif
#if defined(R__MACOSX) && !defined(__SSE2__) && \
(defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__arm64__))
#include <fenv.h>
#endif
// End FPE handling includes
namespace {
// Depending on the platform the struct utmp (or utmpx) has either ut_name or ut_user
// which are semantically equivalent. Instead of using preprocessor magic,
// which is bothersome for cxx modules use SFINAE.
template<typename T>
struct ut_name {
template<typename U = T, typename std::enable_if<std::is_member_pointer<decltype(&U::ut_name)>::value, int>::type = 0>
static char getValue(U* ue, int) {
return ue->ut_name[0];
}
template<typename U = T, typename std::enable_if<std::is_member_pointer<decltype(&U::ut_user)>::value, int>::type = 0>
static char getValue(U* ue, long) {
return ue->ut_user[0];
}
};
static char get_ut_name(STRUCT_UTMP *ue) {
// 0 is an integer literal forcing an overload pickup in case both ut_name and ut_user are present.
return ut_name<STRUCT_UTMP>::getValue(ue, 0);
}
}
struct TUtmpContent {
STRUCT_UTMP *fUtmpContents;
UInt_t fEntries; // Number of entries in utmp file.
TUtmpContent() : fUtmpContents(0), fEntries(0) {}
~TUtmpContent() { free(fUtmpContents); }
STRUCT_UTMP *SearchUtmpEntry(const char *tty)
{
// Look for utmp entry which is connected to terminal tty.
STRUCT_UTMP *ue = fUtmpContents;
UInt_t n = fEntries;
while (n--) {
if (get_ut_name(ue) && !strncmp(tty, ue->ut_line, sizeof(ue->ut_line)))
return ue;
ue++;
}
return 0;
}
int ReadUtmpFile()
{
// Read utmp file. Returns number of entries in utmp file.
FILE *utmp;
struct stat file_stats;
size_t n_read, size;
fEntries = 0;
R__LOCKGUARD2(gSystemMutex);
utmp = fopen(UTMP_FILE, "r");
if (!utmp)
return 0;
if (fstat(fileno(utmp), &file_stats) == -1) {
fclose(utmp);
return 0;
}
size = file_stats.st_size;
if (size <= 0) {
fclose(utmp);
return 0;
}
fUtmpContents = (STRUCT_UTMP *) malloc(size);
if (!fUtmpContents) {
fclose(utmp);
return 0;
}
n_read = fread(fUtmpContents, 1, size, utmp);
if (!ferror(utmp)) {
if (fclose(utmp) != EOF && n_read == size) {
fEntries = size / sizeof(STRUCT_UTMP);
return fEntries;
}
} else
fclose(utmp);
free(fUtmpContents);
fUtmpContents = 0;
return 0;
}
};
const char *kServerPath = "/tmp";
const char *kProtocolName = "tcp";
//------------------- Unix TFdSet ----------------------------------------------
#ifndef HOWMANY
# define HOWMANY(x, y) (((x)+((y)-1))/(y))
#endif
const Int_t kNFDBITS = (sizeof(Long_t) * 8); // 8 bits per byte
#ifdef FD_SETSIZE
const Int_t kFDSETSIZE = FD_SETSIZE; // Linux = 1024 file descriptors
#else
const Int_t kFDSETSIZE = 256; // upto 256 file descriptors
#endif
class TFdSet {
private:
ULong_t fds_bits[HOWMANY(kFDSETSIZE, kNFDBITS)];
public:
TFdSet() { memset(fds_bits, 0, sizeof(fds_bits)); }
TFdSet(const TFdSet &org) { memcpy(fds_bits, org.fds_bits, sizeof(org.fds_bits)); }
TFdSet &operator=(const TFdSet &rhs) { if (this != &rhs) { memcpy(fds_bits, rhs.fds_bits, sizeof(rhs.fds_bits));} return *this; }
void Zero() { memset(fds_bits, 0, sizeof(fds_bits)); }
void Set(Int_t n)
{
if (n >= 0 && n < kFDSETSIZE) {
fds_bits[n/kNFDBITS] |= (1UL << (n % kNFDBITS));
} else {
::Fatal("TFdSet::Set","fd (%d) out of range [0..%d]", n, kFDSETSIZE-1);
}
}
void Clr(Int_t n)
{
if (n >= 0 && n < kFDSETSIZE) {
fds_bits[n/kNFDBITS] &= ~(1UL << (n % kNFDBITS));
} else {
::Fatal("TFdSet::Clr","fd (%d) out of range [0..%d]", n, kFDSETSIZE-1);
}
}
Int_t IsSet(Int_t n)
{
if (n >= 0 && n < kFDSETSIZE) {
return (fds_bits[n/kNFDBITS] & (1UL << (n % kNFDBITS))) != 0;
} else {
::Fatal("TFdSet::IsSet","fd (%d) out of range [0..%d]", n, kFDSETSIZE-1);
return 0;
}
}
ULong_t *GetBits() { return (ULong_t *)fds_bits; }
};
////////////////////////////////////////////////////////////////////////////////
/// Unix signal handler.
static void SigHandler(ESignals sig)
{
if (gSystem)
((TUnixSystem*)gSystem)->DispatchSignals(sig);
}
////////////////////////////////////////////////////////////////////////////////
static const char *GetExePath()
{
TTHREAD_TLS_DECL(TString,exepath);
if (exepath == "") {
#if defined(R__MACOSX)
exepath = _dyld_get_image_name(0);
#elif defined(R__LINUX) || defined(R__SOLARIS) || defined(R__FBSD)
char buf[kMAXPATHLEN]; // exe path name
// get the name from the link in /proc
#if defined(R__LINUX)
int ret = readlink("/proc/self/exe", buf, kMAXPATHLEN);
#elif defined(R__SOLARIS)
int ret = readlink("/proc/self/path/a.out", buf, kMAXPATHLEN);
#elif defined(R__FBSD)
int ret = readlink("/proc/curproc/file", buf, kMAXPATHLEN);
#endif
if (ret > 0 && ret < kMAXPATHLEN) {
buf[ret] = 0;
exepath = buf;
}
#else
if (!gApplication)
return exepath;
TString p = gApplication->Argv(0);
if (p.BeginsWith("/"))
exepath = p;
else if (p.Contains("/")) {
exepath = gSystem->WorkingDirectory();
exepath += "/";
exepath += p;
} else {
char *exe = gSystem->Which(gSystem->Getenv("PATH"), p, kExecutePermission);
if (exe) {
exepath = exe;
delete [] exe;
}
}
#endif
}
return exepath;
}
#if defined(HAVE_DLADDR) && !defined(R__MACOSX)
////////////////////////////////////////////////////////////////////////////////
static void SetRootSys()
{
#ifdef ROOTPREFIX
if (gSystem->Getenv("ROOTIGNOREPREFIX")) {
#endif
void *addr = (void *)SetRootSys;
Dl_info info;
if (dladdr(addr, &info) && info.dli_fname && info.dli_fname[0]) {
char respath[kMAXPATHLEN];
if (!realpath(info.dli_fname, respath)) {
if (!gSystem->Getenv("ROOTSYS"))
::SysError("TUnixSystem::SetRootSys", "error getting realpath of libCore, please set ROOTSYS in the shell");
} else {
TString rs = gSystem->DirName(respath);
gSystem->Setenv("ROOTSYS", gSystem->DirName(rs));
}
}
#ifdef ROOTPREFIX
}
#endif
}
#endif
#if defined(R__MACOSX)
static TString gLinkedDylibs;
////////////////////////////////////////////////////////////////////////////////
static void DylibAdded(const struct mach_header *mh, intptr_t /* vmaddr_slide */)
{
static int i = 0;
static Bool_t gotFirstSo = kFALSE;
static TString linkedDylibs;
// to copy the local linkedDylibs to the global gLinkedDylibs call this
// function with mh==0
if (!mh) {
gLinkedDylibs = linkedDylibs;
return;
}
TString lib = _dyld_get_image_name(i++);
TRegexp sovers = "libCore\\.[0-9]+\\.*[0-9]*\\.*[0-9]*\\.so";
TRegexp dyvers = "libCore\\.[0-9]+\\.*[0-9]*\\.*[0-9]*\\.dylib";
#ifdef ROOTPREFIX
if (gSystem->Getenv("ROOTIGNOREPREFIX")) {
#endif
#if TARGET_OS_IPHONE || TARGET_IPHONE_SIMULATOR
// first loaded is the app so set ROOTSYS to app bundle
if (i == 1) {
char respath[kMAXPATHLEN];
if (!realpath(lib, respath)) {
if (!gSystem->Getenv("ROOTSYS"))
::SysError("TUnixSystem::DylibAdded", "error getting realpath of %s", gSystem->BaseName(lib));
} else {
TString rs = gSystem->DirName(respath);
gSystem->Setenv("ROOTSYS", rs);
}
}
#else
if (lib.EndsWith("libCore.dylib") || lib.EndsWith("libCore.so") ||
lib.Index(sovers) != kNPOS || lib.Index(dyvers) != kNPOS) {
char respath[kMAXPATHLEN];
if (!realpath(lib, respath)) {
if (!gSystem->Getenv("ROOTSYS"))
::SysError("TUnixSystem::DylibAdded", "error getting realpath of libCore, please set ROOTSYS in the shell");
} else {
TString rs = gSystem->DirName(respath);
gSystem->Setenv("ROOTSYS", gSystem->DirName(rs));
}
}
#endif
#ifdef ROOTPREFIX
}
#endif
// when libSystem.B.dylib is loaded we have finished loading all dylibs
// explicitly linked against the executable. Additional dylibs
// come when they are explicitly linked against loaded so's, currently
// we are not interested in these
if (lib.EndsWith("/libSystem.B.dylib"))
gotFirstSo = kTRUE;
// add all libs loaded before libSystem.B.dylib
if (!gotFirstSo && (lib.EndsWith(".dylib") || lib.EndsWith(".so"))) {
sovers = "\\.[0-9]+\\.*[0-9]*\\.so";
Ssiz_t idx = lib.Index(sovers);
if (idx != kNPOS) {
lib.Remove(idx);
lib += ".so";
}
dyvers = "\\.[0-9]+\\.*[0-9]*\\.dylib";
idx = lib.Index(dyvers);
if (idx != kNPOS) {
lib.Remove(idx);
lib += ".dylib";
}
if (!gSystem->AccessPathName(lib, kReadPermission)) {
if (linkedDylibs.Length())
linkedDylibs += " ";
linkedDylibs += lib;
}
}
}
#endif
ClassImp(TUnixSystem);
////////////////////////////////////////////////////////////////////////////////
TUnixSystem::TUnixSystem() : TSystem("Unix", "Unix System")
{ }
////////////////////////////////////////////////////////////////////////////////
/// Reset to original state.
TUnixSystem::~TUnixSystem()
{
UnixResetSignals();
delete fReadmask;
delete fWritemask;
delete fReadready;
delete fWriteready;
delete fSignals;
}
////////////////////////////////////////////////////////////////////////////////
/// Initialize Unix system interface.
Bool_t TUnixSystem::Init()
{
if (TSystem::Init())
return kTRUE;
fReadmask = new TFdSet;
fWritemask = new TFdSet;
fReadready = new TFdSet;
fWriteready = new TFdSet;
fSignals = new TFdSet;
//--- install default handlers
UnixSignal(kSigChild, SigHandler);
UnixSignal(kSigBus, SigHandler);
UnixSignal(kSigSegmentationViolation, SigHandler);
UnixSignal(kSigIllegalInstruction, SigHandler);
UnixSignal(kSigSystem, SigHandler);
UnixSignal(kSigAlarm, SigHandler);
UnixSignal(kSigUrgent, SigHandler);
UnixSignal(kSigFloatingException, SigHandler);
UnixSignal(kSigWindowChanged, SigHandler);
UnixSignal(kSigUser2, SigHandler);
#if defined(R__MACOSX)
// trap loading of all dylibs to register dylib name,
// sets also ROOTSYS if built without ROOTPREFIX
_dyld_register_func_for_add_image(DylibAdded);
#elif defined(HAVE_DLADDR)
SetRootSys();
#endif
// This is a fallback in case TROOT::GetRootSys() can't determine ROOTSYS
gRootDir = "/usr/local/root";
return kFALSE;
}
//---- Misc --------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Set the application name (from command line, argv[0]) and copy it in
/// gProgName. Copy the application pathname in gProgPath.
/// If name is 0 let the system set the actual executable name and path
/// (works on MacOS X and Linux).
void TUnixSystem::SetProgname(const char *name)
{
if (gProgName)
delete [] gProgName;
if (gProgPath)
delete [] gProgPath;
if (!name || !*name) {
name = GetExePath();
gProgName = StrDup(BaseName(name));
gProgPath = StrDup(DirName(name));
} else {
gProgName = StrDup(BaseName(name));
char *w = Which(Getenv("PATH"), gProgName);
gProgPath = StrDup(DirName(w));
delete [] w;
}
}
////////////////////////////////////////////////////////////////////////////////
/// Set DISPLAY environment variable based on utmp entry. Only for UNIX.
void TUnixSystem::SetDisplay()
{
if (!Getenv("DISPLAY")) {
char *tty = ::ttyname(0); // device user is logged in on
if (tty) {
tty += 5; // remove "/dev/"
TUtmpContent utmp;
utmp.ReadUtmpFile();
STRUCT_UTMP *utmp_entry = utmp.SearchUtmpEntry(tty);
if (utmp_entry) {
if (utmp_entry->ut_host[0]) {
if (strchr(utmp_entry->ut_host, ':')) {
Setenv("DISPLAY", utmp_entry->ut_host);
Warning("SetDisplay", "DISPLAY not set, setting it to %s",
utmp_entry->ut_host);
} else {
char disp[260];
snprintf(disp, sizeof(disp), "%s:0.0", utmp_entry->ut_host);
Setenv("DISPLAY", disp);
Warning("SetDisplay", "DISPLAY not set, setting it to %s",
disp);
}
}
#ifndef UTMP_NO_ADDR
else if (utmp_entry->ut_addr) {
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = 0;
memcpy(&addr.sin_addr, &utmp_entry->ut_addr, sizeof(addr.sin_addr));
memset(&addr.sin_zero[0], 0, sizeof(addr.sin_zero));
struct sockaddr *sa = (struct sockaddr *) &addr; // input
char hbuf[NI_MAXHOST];
if (getnameinfo(sa, sizeof(struct sockaddr), hbuf, sizeof(hbuf), nullptr, 0, NI_NAMEREQD) == 0) {
char disp[64];
snprintf(disp, sizeof(disp), "%s:0.0", hbuf);
Setenv("DISPLAY", disp);
Warning("SetDisplay", "DISPLAY not set, setting it to %s",
disp);
}
}
#endif
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
/// Return system error string.
const char *TUnixSystem::GetError()
{
Int_t err = GetErrno();
if (err == 0 && GetLastErrorString() != "")
return GetLastErrorString();
#if defined(R__SOLARIS) || defined (R__LINUX) || defined(R__AIX) || \
defined(R__FBSD) || defined(R__OBSD) || defined(R__HURD)
return strerror(err);
#else
if (err < 0 || err >= sys_nerr)
return Form("errno out of range %d", err);
return sys_errlist[err];
#endif
}
////////////////////////////////////////////////////////////////////////////////
/// Return the system's host name.
const char *TUnixSystem::HostName()
{
if (fHostname == "") {
char hn[64];
#if defined(R__SOLARIS)
sysinfo(SI_HOSTNAME, hn, sizeof(hn));
#else
gethostname(hn, sizeof(hn));
#endif
fHostname = hn;
}
return (const char *)fHostname;
}
//---- EventLoop ---------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Add a file handler to the list of system file handlers. Only adds
/// the handler if it is not already in the list of file handlers.
void TUnixSystem::AddFileHandler(TFileHandler *h)
{
R__LOCKGUARD2(gSystemMutex);
TSystem::AddFileHandler(h);
if (h) {
int fd = h->GetFd();
if (h->HasReadInterest()) {
fReadmask->Set(fd);
fMaxrfd = TMath::Max(fMaxrfd, fd);
}
if (h->HasWriteInterest()) {
fWritemask->Set(fd);
fMaxwfd = TMath::Max(fMaxwfd, fd);
}
}
}
////////////////////////////////////////////////////////////////////////////////
/// Remove a file handler from the list of file handlers. Returns
/// the handler or 0 if the handler was not in the list of file handlers.
TFileHandler *TUnixSystem::RemoveFileHandler(TFileHandler *h)
{
if (!h) return 0;
R__LOCKGUARD2(gSystemMutex);
TFileHandler *oh = TSystem::RemoveFileHandler(h);
if (oh) { // found
TFileHandler *th;
TIter next(fFileHandler);
fMaxrfd = -1;
fMaxwfd = -1;
fReadmask->Zero();
fWritemask->Zero();
while ((th = (TFileHandler *) next())) {
int fd = th->GetFd();
if (th->HasReadInterest()) {
fReadmask->Set(fd);
fMaxrfd = TMath::Max(fMaxrfd, fd);
}
if (th->HasWriteInterest()) {
fWritemask->Set(fd);
fMaxwfd = TMath::Max(fMaxwfd, fd);
}
}
}
return oh;
}
////////////////////////////////////////////////////////////////////////////////
/// Add a signal handler to list of system signal handlers. Only adds
/// the handler if it is not already in the list of signal handlers.
void TUnixSystem::AddSignalHandler(TSignalHandler *h)
{
R__LOCKGUARD2(gSystemMutex);
TSystem::AddSignalHandler(h);
UnixSignal(h->GetSignal(), SigHandler);
}
////////////////////////////////////////////////////////////////////////////////
/// Remove a signal handler from list of signal handlers. Returns
/// the handler or 0 if the handler was not in the list of signal handlers.
TSignalHandler *TUnixSystem::RemoveSignalHandler(TSignalHandler *h)
{
if (!h) return 0;
R__LOCKGUARD2(gSystemMutex);
TSignalHandler *oh = TSystem::RemoveSignalHandler(h);
Bool_t last = kTRUE;
TSignalHandler *hs;
TIter next(fSignalHandler);
while ((hs = (TSignalHandler*) next())) {
if (hs->GetSignal() == h->GetSignal())
last = kFALSE;
}
if (last)
ResetSignal(h->GetSignal(), kTRUE);
return oh;
}
////////////////////////////////////////////////////////////////////////////////
/// If reset is true reset the signal handler for the specified signal
/// to the default handler, else restore previous behaviour.
void TUnixSystem::ResetSignal(ESignals sig, Bool_t reset)
{
if (reset)
UnixResetSignal(sig);
else
UnixSignal(sig, SigHandler);
}
////////////////////////////////////////////////////////////////////////////////
/// Reset signals handlers to previous behaviour.
void TUnixSystem::ResetSignals()
{
UnixResetSignals();
}
////////////////////////////////////////////////////////////////////////////////
/// If ignore is true ignore the specified signal, else restore previous
/// behaviour.
void TUnixSystem::IgnoreSignal(ESignals sig, Bool_t ignore)
{
UnixIgnoreSignal(sig, ignore);
}
////////////////////////////////////////////////////////////////////////////////
/// When the argument is true the SIGALRM signal handler is set so that
/// interrupted syscalls will not be restarted by the kernel. This is
/// typically used in case one wants to put a timeout on an I/O operation.
/// By default interrupted syscalls will always be restarted (for all
/// signals). This can be controlled for each a-synchronous TTimer via
/// the method TTimer::SetInterruptSyscalls().
void TUnixSystem::SigAlarmInterruptsSyscalls(Bool_t set)
{
UnixSigAlarmInterruptsSyscalls(set);
}
////////////////////////////////////////////////////////////////////////////////
/// Return the bitmap of conditions that trigger a floating point exception.
Int_t TUnixSystem::GetFPEMask()
{
Int_t mask = 0;
#if defined(R__LINUX) && !defined(__powerpc__)
#if defined(__GLIBC__) && (__GLIBC__>2 || __GLIBC__==2 && __GLIBC_MINOR__>=1)
#if __GLIBC_MINOR__>=3
Int_t oldmask = fegetexcept();
#else
fenv_t oldenv;
fegetenv(&oldenv);
fesetenv(&oldenv);
#if __ia64__
Int_t oldmask = ~oldenv;
#else
Int_t oldmask = ~oldenv.__control_word;
#endif
#endif
if (oldmask & FE_INVALID ) mask |= kInvalid;
if (oldmask & FE_DIVBYZERO) mask |= kDivByZero;
if (oldmask & FE_OVERFLOW ) mask |= kOverflow;
if (oldmask & FE_UNDERFLOW) mask |= kUnderflow;
# ifdef FE_INEXACT
if (oldmask & FE_INEXACT ) mask |= kInexact;
# endif
#endif
#endif
#if defined(R__MACOSX) && defined(__SSE2__)
// OS X uses the SSE unit for all FP math by default, not the x87 FP unit
Int_t oldmask = ~_MM_GET_EXCEPTION_MASK();
if (oldmask & _MM_MASK_INVALID ) mask |= kInvalid;
if (oldmask & _MM_MASK_DIV_ZERO ) mask |= kDivByZero;
if (oldmask & _MM_MASK_OVERFLOW ) mask |= kOverflow;
if (oldmask & _MM_MASK_UNDERFLOW) mask |= kUnderflow;
if (oldmask & _MM_MASK_INEXACT ) mask |= kInexact;
#endif
#if defined(R__MACOSX) && !defined(__SSE2__) && \
(defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__arm64__))
fenv_t oldenv;
fegetenv(&oldenv);
fesetenv(&oldenv);
#if defined(__arm__)
Int_t oldmask = ~oldenv.__fpscr;
#elif defined(__arm64__)
Int_t oldmask = ~oldenv.__fpcr;
#else
Int_t oldmask = ~oldenv.__control;
#endif
if (oldmask & FE_INVALID ) mask |= kInvalid;
if (oldmask & FE_DIVBYZERO) mask |= kDivByZero;
if (oldmask & FE_OVERFLOW ) mask |= kOverflow;
if (oldmask & FE_UNDERFLOW) mask |= kUnderflow;
if (oldmask & FE_INEXACT ) mask |= kInexact;
#endif
#if defined(R__MACOSX) && !defined(__SSE2__) && !defined(__xlC__) && \
!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__) && \
!defined(__arm64__)
Long64_t oldmask;
fegetenvd(oldmask);
if (oldmask & FE_ENABLE_INVALID ) mask |= kInvalid;
if (oldmask & FE_ENABLE_DIVBYZERO) mask |= kDivByZero;
if (oldmask & FE_ENABLE_OVERFLOW ) mask |= kOverflow;
if (oldmask & FE_ENABLE_UNDERFLOW) mask |= kUnderflow;
if (oldmask & FE_ENABLE_INEXACT ) mask |= kInexact;
#endif
return mask;
}
////////////////////////////////////////////////////////////////////////////////
/// Set which conditions trigger a floating point exception.
/// Return the previous set of conditions.
Int_t TUnixSystem::SetFPEMask(Int_t mask)
{
if (mask) { } // use mask to avoid warning
Int_t old = GetFPEMask();
#if defined(R__LINUX) && !defined(__powerpc__)
#if defined(__GLIBC__) && (__GLIBC__>2 || __GLIBC__==2 && __GLIBC_MINOR__>=1)
Int_t newm = 0;
if (mask & kInvalid ) newm |= FE_INVALID;
if (mask & kDivByZero) newm |= FE_DIVBYZERO;
if (mask & kOverflow ) newm |= FE_OVERFLOW;
if (mask & kUnderflow) newm |= FE_UNDERFLOW;
# ifdef FE_INEXACT
if (mask & kInexact ) newm |= FE_INEXACT;
# endif
#if __GLIBC_MINOR__>=3
// clear pending exceptions so feenableexcept does not trigger them
feclearexcept(FE_ALL_EXCEPT);
fedisableexcept(FE_ALL_EXCEPT);
feenableexcept(newm);
#else
fenv_t cur;
fegetenv(&cur);
#if defined __ia64__
cur &= ~newm;
#else
cur.__control_word &= ~newm;
#endif
fesetenv(&cur);
#endif
#endif
#endif
#if defined(R__MACOSX) && defined(__SSE2__)
// OS X uses the SSE unit for all FP math by default, not the x87 FP unit
Int_t newm = 0;
if (mask & kInvalid ) newm |= _MM_MASK_INVALID;
if (mask & kDivByZero) newm |= _MM_MASK_DIV_ZERO;
if (mask & kOverflow ) newm |= _MM_MASK_OVERFLOW;
if (mask & kUnderflow) newm |= _MM_MASK_UNDERFLOW;
if (mask & kInexact ) newm |= _MM_MASK_INEXACT;
_MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~newm);
#endif
#if defined(R__MACOSX) && !defined(__SSE2__) && \
(defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__arm64__))
Int_t newm = 0;
if (mask & kInvalid ) newm |= FE_INVALID;
if (mask & kDivByZero) newm |= FE_DIVBYZERO;
if (mask & kOverflow ) newm |= FE_OVERFLOW;
if (mask & kUnderflow) newm |= FE_UNDERFLOW;
if (mask & kInexact ) newm |= FE_INEXACT;
fenv_t cur;
fegetenv(&cur);
#if defined(__arm__)
cur.__fpscr &= ~newm;
#elif defined(__arm64__)
cur.__fpcr &= ~newm;
#else
cur.__control &= ~newm;
#endif
fesetenv(&cur);
#endif
#if defined(R__MACOSX) && !defined(__SSE2__) && !defined(__xlC__) && \
!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__) && \
!defined(__arm64__)
Int_t newm = 0;
if (mask & kInvalid ) newm |= FE_ENABLE_INVALID;
if (mask & kDivByZero) newm |= FE_ENABLE_DIVBYZERO;
if (mask & kOverflow ) newm |= FE_ENABLE_OVERFLOW;
if (mask & kUnderflow) newm |= FE_ENABLE_UNDERFLOW;
if (mask & kInexact ) newm |= FE_ENABLE_INEXACT;
Long64_t curmask;
fegetenvd(curmask);
curmask = (curmask & ~FE_ENABLE_ALL_EXCEPT) | newm;
fesetenvd(curmask);
#endif
return old;
}
////////////////////////////////////////////////////////////////////////////////
/// Dispatch a single event.
void TUnixSystem::DispatchOneEvent(Bool_t pendingOnly)
{
Bool_t pollOnce = pendingOnly;
while (1) {
// first handle any X11 events
if (gXDisplay && gXDisplay->Notify()) {
if (fReadready->IsSet(gXDisplay->GetFd())) {
fReadready->Clr(gXDisplay->GetFd());
fNfd--;
}
if (!pendingOnly) return;
}
// check for file descriptors ready for reading/writing
if (fNfd > 0 && fFileHandler && fFileHandler->GetSize() > 0)
if (CheckDescriptors())
if (!pendingOnly) return;
fNfd = 0;
fReadready->Zero();
fWriteready->Zero();
if (pendingOnly && !pollOnce)
return;
// check synchronous signals
if (fSigcnt > 0 && fSignalHandler->GetSize() > 0)
if (CheckSignals(kTRUE))
if (!pendingOnly) return;
fSigcnt = 0;
fSignals->Zero();
// check synchronous timers
Long_t nextto;
if (fTimers && fTimers->GetSize() > 0)
if (DispatchTimers(kTRUE)) {
// prevent timers from blocking file descriptor monitoring
nextto = NextTimeOut(kTRUE);
if (nextto > kItimerResolution || nextto == -1)
return;
}
// if in pendingOnly mode poll once file descriptor activity
nextto = NextTimeOut(kTRUE);
if (pendingOnly) {
if (fFileHandler && fFileHandler->GetSize() == 0)
return;
nextto = 0;
pollOnce = kFALSE;
}
// nothing ready, so setup select call
*fReadready = *fReadmask;
*fWriteready = *fWritemask;
int mxfd = TMath::Max(fMaxrfd, fMaxwfd);
mxfd++;
// if nothing to select (socket or timer) return
if (mxfd == 0 && nextto == -1)
return;
fNfd = UnixSelect(mxfd, fReadready, fWriteready, nextto);
if (fNfd < 0 && fNfd != -2) {
int fd, rc;
TFdSet t;
for (fd = 0; fd < mxfd; fd++) {
t.Set(fd);
if (fReadmask->IsSet(fd)) {
rc = UnixSelect(fd+1, &t, 0, 0);
if (rc < 0 && rc != -2) {
SysError("DispatchOneEvent", "select: read error on %d", fd);
fReadmask->Clr(fd);
}
}
if (fWritemask->IsSet(fd)) {
rc = UnixSelect(fd+1, 0, &t, 0);
if (rc < 0 && rc != -2) {
SysError("DispatchOneEvent", "select: write error on %d", fd);
fWritemask->Clr(fd);
}
}
t.Clr(fd);
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
/// Sleep milliSec milliseconds.
void TUnixSystem::Sleep(UInt_t milliSec)
{
struct timeval tv;
tv.tv_sec = milliSec / 1000;
tv.tv_usec = (milliSec % 1000) * 1000;
select(0, 0, 0, 0, &tv);
}
////////////////////////////////////////////////////////////////////////////////
/// Select on file descriptors. The timeout to is in millisec. Returns
/// the number of ready descriptors, or 0 in case of timeout, or < 0 in
/// case of an error, with -2 being EINTR and -3 EBADF. In case of EINTR
/// the errno has been reset and the method can be called again. Returns
/// -4 in case the list did not contain any file handlers or file handlers
/// with file descriptor >= 0.
Int_t TUnixSystem::Select(TList *act, Long_t to)
{
Int_t rc = -4;
TFdSet rd, wr;
Int_t mxfd = -1;
TIter next(act);
TFileHandler *h = 0;
while ((h = (TFileHandler *) next())) {
Int_t fd = h->GetFd();
if (fd > -1) {
if (h->HasReadInterest()) {
rd.Set(fd);
mxfd = TMath::Max(mxfd, fd);
}
if (h->HasWriteInterest()) {
wr.Set(fd);
mxfd = TMath::Max(mxfd, fd);
}
h->ResetReadyMask();
}
}
if (mxfd > -1)
rc = UnixSelect(mxfd+1, &rd, &wr, to);
// Set readiness bits
if (rc > 0) {
next.Reset();
while ((h = (TFileHandler *) next())) {
Int_t fd = h->GetFd();
if (rd.IsSet(fd))
h->SetReadReady();
if (wr.IsSet(fd))
h->SetWriteReady();
}
}
return rc;
}
////////////////////////////////////////////////////////////////////////////////
/// Select on the file descriptor related to file handler h.
/// The timeout to is in millisec. Returns the number of ready descriptors,
/// or 0 in case of timeout, or < 0 in case of an error, with -2 being EINTR
/// and -3 EBADF. In case of EINTR the errno has been reset and the method
/// can be called again. Returns -4 in case the file handler is 0 or does
/// not have a file descriptor >= 0.
Int_t TUnixSystem::Select(TFileHandler *h, Long_t to)
{
Int_t rc = -4;
TFdSet rd, wr;
Int_t mxfd = -1;
Int_t fd = -1;
if (h) {
fd = h->GetFd();
if (fd > -1) {
if (h->HasReadInterest())
rd.Set(fd);
if (h->HasWriteInterest())
wr.Set(fd);
h->ResetReadyMask();
mxfd = fd;
rc = UnixSelect(mxfd+1, &rd, &wr, to);
}
}
// Fill output lists, if required
if (rc > 0) {
if (rd.IsSet(fd))
h->SetReadReady();
if (wr.IsSet(fd))
h->SetWriteReady();
}
return rc;
}
//---- handling of system events -----------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Check if some signals were raised and call their Notify() member.
Bool_t TUnixSystem::CheckSignals(Bool_t sync)
{
TSignalHandler *sh;
Int_t sigdone = -1;
{
TOrdCollectionIter it((TOrdCollection*)fSignalHandler);
while ((sh = (TSignalHandler*)it.Next())) {
if (sync == sh->IsSync()) {
ESignals sig = sh->GetSignal();
if ((fSignals->IsSet(sig) && sigdone == -1) || sigdone == sig) {
if (sigdone == -1) {
fSignals->Clr(sig);
sigdone = sig;
fSigcnt--;
}
if (sh->IsActive())
sh->Notify();
}
}
}
}
if (sigdone != -1)
return kTRUE;
return kFALSE;
}
////////////////////////////////////////////////////////////////////////////////
/// Check if children have finished.
void TUnixSystem::CheckChilds()
{
#if 0 //rdm
int pid;
while ((pid = UnixWaitchild()) > 0) {
TIter next(zombieHandler);
register UnixPtty *pty;
while ((pty = (UnixPtty*) next()))
if (pty->GetPid() == pid) {
zombieHandler->RemovePtr(pty);
pty->DiedNotify();
}
}
#endif
}
////////////////////////////////////////////////////////////////////////////////
/// Check if there is activity on some file descriptors and call their
/// Notify() member.
Bool_t TUnixSystem::CheckDescriptors()
{
TFileHandler *fh;
Int_t fddone = -1;
Bool_t read = kFALSE;
TOrdCollectionIter it((TOrdCollection*)fFileHandler);
while ((fh = (TFileHandler*) it.Next())) {
Int_t fd = fh->GetFd();
if ((fd <= fMaxrfd && fReadready->IsSet(fd) && fddone == -1) ||
(fddone == fd && read)) {
if (fddone == -1) {
fReadready->Clr(fd);
fddone = fd;
read = kTRUE;
fNfd--;
}
if (fh->IsActive())
fh->ReadNotify();
}
if ((fd <= fMaxwfd && fWriteready->IsSet(fd) && fddone == -1) ||
(fddone == fd && !read)) {
if (fddone == -1) {
fWriteready->Clr(fd);
fddone = fd;
read = kFALSE;
fNfd--;
}
if (fh->IsActive())
fh->WriteNotify();
}
}
if (fddone != -1)
return kTRUE;
return kFALSE;
}
//---- Directories -------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Make a Unix file system directory. Returns 0 in case of success and
/// -1 if the directory could not be created.
int TUnixSystem::MakeDirectory(const char *name)
{
TSystem *helper = FindHelper(name);
if (helper)
return helper->MakeDirectory(name);
return UnixMakedir(name);
}
////////////////////////////////////////////////////////////////////////////////
/// Open a Unix file system directory. Returns 0 if directory does not exist.
void *TUnixSystem::OpenDirectory(const char *name)
{
TSystem *helper = FindHelper(name);
if (helper)
return helper->OpenDirectory(name);
return UnixOpendir(name);
}
////////////////////////////////////////////////////////////////////////////////
/// Close a Unix file system directory.
void TUnixSystem::FreeDirectory(void *dirp)
{
TSystem *helper = FindHelper(0, dirp);
if (helper) {
helper->FreeDirectory(dirp);
return;
}
if (dirp)
::closedir((DIR*)dirp);
}
////////////////////////////////////////////////////////////////////////////////
/// Get next Unix file system directory entry. Returns 0 if no more entries.
const char *TUnixSystem::GetDirEntry(void *dirp)
{
TSystem *helper = FindHelper(0, dirp);
if (helper)
return helper->GetDirEntry(dirp);
if (dirp)
return UnixGetdirentry(dirp);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Change directory. Returns kTRUE in case of success, kFALSE otherwise.
Bool_t TUnixSystem::ChangeDirectory(const char *path)
{
Bool_t ret = (Bool_t) (::chdir(path) == 0);
if (fWdpath != "")
fWdpath = ""; // invalidate path cache
return ret;
}
////////////////////////////////////////////////////////////////////////////////
/// Return working directory.
const char *TUnixSystem::WorkingDirectory()
{
// don't use cache as user can call chdir() directly somewhere else
//if (fWdpath != "")
// return fWdpath.Data();
R__LOCKGUARD2(gSystemMutex);
static char cwd[kMAXPATHLEN];
FillWithCwd(cwd);
fWdpath = cwd;
return fWdpath.Data();
}
//////////////////////////////////////////////////////////////////////////////
/// Return working directory.
std::string TUnixSystem::GetWorkingDirectory() const
{
char cwd[kMAXPATHLEN];
FillWithCwd(cwd);
return std::string(cwd);
}
//////////////////////////////////////////////////////////////////////////////
/// Fill buffer with current working directory.
void TUnixSystem::FillWithCwd(char *cwd) const
{
if (::getcwd(cwd, kMAXPATHLEN) == 0) {
Error("WorkingDirectory", "getcwd() failed");
}
}
////////////////////////////////////////////////////////////////////////////////
/// Return the user's home directory.
const char *TUnixSystem::HomeDirectory(const char *userName)
{
return UnixHomedirectory(userName);
}
//////////////////////////////////////////////////////////////////////////////
/// Return the user's home directory.
std::string TUnixSystem::GetHomeDirectory(const char *userName) const
{
char path[kMAXPATHLEN], mydir[kMAXPATHLEN] = { '\0' };
auto res = UnixHomedirectory(userName, path, mydir);
if (res) return std::string(res);
else return std::string();
}
////////////////////////////////////////////////////////////////////////////////
/// Return a user configured or systemwide directory to create
/// temporary files in.
const char *TUnixSystem::TempDirectory() const
{
const char *dir = gSystem->Getenv("TMPDIR");
if (!dir || gSystem->AccessPathName(dir, kWritePermission))
dir = "/tmp";
return dir;
}
////////////////////////////////////////////////////////////////////////////////
/// Create a secure temporary file by appending a unique
/// 6 letter string to base. The file will be created in
/// a standard (system) directory or in the directory
/// provided in dir. The full filename is returned in base
/// and a filepointer is returned for safely writing to the file
/// (this avoids certain security problems). Returns 0 in case
/// of error.
FILE *TUnixSystem::TempFileName(TString &base, const char *dir)
{
char *b = ConcatFileName(dir ? dir : TempDirectory(), base);
base = b;
base += "XXXXXX";
delete [] b;
char *arg = StrDup(base);
int fd = mkstemp(arg);
base = arg;
delete [] arg;
if (fd == -1) {
SysError("TempFileName", "%s", base.Data());
return 0;
} else {
FILE *fp = fdopen(fd, "w+");
if (fp == 0)
SysError("TempFileName", "converting filedescriptor (%d)", fd);
return fp;
}
}
////////////////////////////////////////////////////////////////////////////////
/// Concatenate a directory and a file name.
const char *TUnixSystem::PrependPathName(const char *dir, TString& name)
{
if (name.IsNull() || name == ".") {
if (dir) {
name = dir;
if (dir[strlen(dir) - 1] != '/')
name += '/';
} else name = "";
return name.Data();
}
if (!dir || !dir[0]) dir = "/";
else if (dir[strlen(dir) - 1] != '/')
name.Prepend('/');
name.Prepend(dir);
return name.Data();
}
//---- Paths & Files -----------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Returns FALSE if one can access a file using the specified access mode.
/// Mode is the same as for the Unix access(2) function.
/// Attention, bizarre convention of return value!!
Bool_t TUnixSystem::AccessPathName(const char *path, EAccessMode mode)
{
TSystem *helper = FindHelper(path);
if (helper)
return helper->AccessPathName(path, mode);
if (::access(StripOffProto(path, "file:"), mode) == 0)
return kFALSE;
GetLastErrorString() = GetError();
return kTRUE;
}
////////////////////////////////////////////////////////////////////////////////
/// Copy a file. If overwrite is true and file already exists the
/// file will be overwritten. Returns 0 when successful, -1 in case
/// of file open failure, -2 in case the file already exists and overwrite
/// was false and -3 in case of error during copy.
int TUnixSystem::CopyFile(const char *f, const char *t, Bool_t overwrite)
{
if (!AccessPathName(t) && !overwrite)
return -2;
FILE *from = fopen(f, "r");
if (!from)
return -1;
FILE *to = fopen(t, "w");
if (!to) {
fclose(from);
return -1;
}
const int bufsize = 1024;
char buf[bufsize];
int ret = 0;
while (!ret && !feof(from)) {
size_t numread = fread (buf, sizeof(char), bufsize, from);
size_t numwritten = fwrite(buf, sizeof(char), numread, to);
if (numread != numwritten)
ret = -3;
}
fclose(from);
fclose(to);
return ret;
}
////////////////////////////////////////////////////////////////////////////////
/// Rename a file. Returns 0 when successful, -1 in case of failure.
int TUnixSystem::Rename(const char *f, const char *t)
{
int ret = ::rename(f, t);
GetLastErrorString() = GetError();
return ret;
}
////////////////////////////////////////////////////////////////////////////////
/// Returns TRUE if the url in 'path' points to the local file system.
/// This is used to avoid going through the NIC card for local operations.
Bool_t TUnixSystem::IsPathLocal(const char *path)
{
TSystem *helper = FindHelper(path);
if (helper)
return helper->IsPathLocal(path);
return TSystem::IsPathLocal(path);
}
////////////////////////////////////////////////////////////////////////////////
/// Get info about a file. Info is returned in the form of a FileStat_t
/// structure (see TSystem.h).
/// The function returns 0 in case of success and 1 if the file could
/// not be stat'ed.
int TUnixSystem::GetPathInfo(const char *path, FileStat_t &buf)
{
TSystem *helper = FindHelper(path);
if (helper)
return helper->GetPathInfo(path, buf);
return UnixFilestat(path, buf);
}
////////////////////////////////////////////////////////////////////////////////
/// Get info about a file system: id, bsize, bfree, blocks.
/// Id is file system type (machine dependend, see statfs())
/// Bsize is block size of file system
/// Blocks is total number of blocks in file system
/// Bfree is number of free blocks in file system
/// The function returns 0 in case of success and 1 if the file system could
/// not be stat'ed.
int TUnixSystem::GetFsInfo(const char *path, Long_t *id, Long_t *bsize,
Long_t *blocks, Long_t *bfree)
{
return UnixFSstat(path, id, bsize, blocks, bfree);
}
////////////////////////////////////////////////////////////////////////////////
/// Create a link from file1 to file2. Returns 0 when successful,
/// -1 in case of failure.
int TUnixSystem::Link(const char *from, const char *to)
{
return ::link(from, to);
}
////////////////////////////////////////////////////////////////////////////////
/// Create a symlink from file1 to file2. Returns 0 when successful,
/// -1 in case of failure.
int TUnixSystem::Symlink(const char *from, const char *to)
{
#if defined(R__AIX)
return ::symlink((char*)from, (char*)to);
#else
return ::symlink(from, to);
#endif
}
////////////////////////////////////////////////////////////////////////////////
/// Unlink, i.e. remove, a file or directory. Returns 0 when successful,
/// -1 in case of failure.
int TUnixSystem::Unlink(const char *name)
{
TSystem *helper = FindHelper(name);
if (helper)
return helper->Unlink(name);
#if defined(R__SEEK64)
struct stat64 finfo;
if (lstat64(name, &finfo) < 0)
#else
struct stat finfo;
if (lstat(name, &finfo) < 0)
#endif
return -1;
if (S_ISDIR(finfo.st_mode))
return ::rmdir(name);
else
return ::unlink(name);
}
//---- expand the metacharacters as in the shell -------------------------------
// expand the metacharacters as in the shell
const char
#ifdef G__OLDEXPAND
kShellEscape = '\\',
*kShellStuff = "(){}<>\"'",
#endif
*kShellMeta = "~*[]{}?$";
#ifndef G__OLDEXPAND
////////////////////////////////////////////////////////////////////////////////
/// Expand a pathname getting rid of special shell characters like ~.$, etc.
/// For Unix/Win32 compatibility use $(XXX) instead of $XXX when using
/// environment variables in a pathname. If compatibility is not an issue
/// you can use on Unix directly $XXX. Returns kFALSE in case of success
/// or kTRUE in case of error.
Bool_t TUnixSystem::ExpandPathName(TString &path)
{
const char *p, *patbuf = (const char *)path;
// skip leading blanks
while (*patbuf == ' ')
patbuf++;
// any shell meta characters ?
for (p = patbuf; *p; p++)
if (strchr(kShellMeta, *p))
goto expand;
return kFALSE;
expand:
// replace $(XXX) by $XXX
path.ReplaceAll("$(","$");
path.ReplaceAll(")","");
return ExpandFileName(path);
}
#endif
#ifdef G__OLDEXPAND
////////////////////////////////////////////////////////////////////////////////
/// Expand a pathname getting rid of special shell characters like ~.$, etc.
/// For Unix/Win32 compatibility use $(XXX) instead of $XXX when using
/// environment variables in a pathname. If compatibility is not an issue
/// you can use on Unix directly $XXX. Returns kFALSE in case of success
/// or kTRUE in case of error.
Bool_t TUnixSystem::ExpandPathName(TString &patbuf0)
{
const char *patbuf = (const char *)patbuf0;
const char *hd, *p;
// char cmd[kMAXPATHLEN],
char stuffedPat[kMAXPATHLEN], name[70];
char *q;
FILE *pf;
int ch;
// skip leading blanks
while (*patbuf == ' ')
patbuf++;
// any shell meta characters ?
for (p = patbuf; *p; p++)
if (strchr(kShellMeta, *p))
goto needshell;
return kFALSE;
needshell:
// replace $(XXX) by $XXX
patbuf0.ReplaceAll("$(","$");
patbuf0.ReplaceAll(")","");
// escape shell quote characters
EscChar(patbuf, stuffedPat, sizeof(stuffedPat), (char*)kShellStuff, kShellEscape);
TString cmd("echo ");
// emulate csh -> popen executes sh
if (stuffedPat[0] == '~') {
if (stuffedPat[1] != '\0' && stuffedPat[1] != '/') {
// extract user name
for (p = &stuffedPat[1], q = name; *p && *p !='/';)
*q++ = *p++;
*q = '\0';
hd = UnixHomedirectory(name);
if (hd == 0)
cmd += stuffedPat;
else {
cmd += hd;
cmd += p;
}
} else {
hd = UnixHomedirectory(0);
if (hd == 0) {
GetLastErrorString() = GetError();
return kTRUE;
}
cmd += hd;
cmd += &stuffedPat[1];
}
} else
cmd += stuffedPat;
if ((pf = ::popen(cmd.Data(), "r")) == 0) {
GetLastErrorString() = GetError();
return kTRUE;
}
// read first argument
patbuf0 = "";
int cnt = 0;
#if defined(R__AIX)
again:
#endif
for (ch = fgetc(pf); ch != EOF && ch != ' ' && ch != '\n'; ch = fgetc(pf)) {
patbuf0.Append(ch);
cnt++;
}
#if defined(R__AIX)
// Work around bug timing problem due to delay in forking a large program
if (cnt == 0 && ch == EOF) goto again;
#endif
// skip rest of pipe
while (ch != EOF) {
ch = fgetc(pf);
if (ch == ' ' || ch == '\t') {
GetLastErrorString() = "expression ambigous";
::pclose(pf);
return kTRUE;
}
}
::pclose(pf);
return kFALSE;
}
#endif
////////////////////////////////////////////////////////////////////////////////
/// Expand a pathname getting rid of special shell characaters like ~.$, etc.
/// For Unix/Win32 compatibility use $(XXX) instead of $XXX when using
/// environment variables in a pathname. If compatibility is not an issue
/// you can use on Unix directly $XXX. The user must delete returned string.
/// Returns the expanded pathname or 0 in case of error.
/// The user must delete returned string (delete []).
char *TUnixSystem::ExpandPathName(const char *path)
{
TString patbuf = path;
if (ExpandPathName(patbuf))
return 0;
return StrDup(patbuf.Data());
}
////////////////////////////////////////////////////////////////////////////////
/// Set the file permission bits. Returns -1 in case or error, 0 otherwise.
int TUnixSystem::Chmod(const char *file, UInt_t mode)
{
return ::chmod(file, mode);
}
////////////////////////////////////////////////////////////////////////////////
/// Set the process file creation mode mask.
int TUnixSystem::Umask(Int_t mask)
{
return ::umask(mask);
}
////////////////////////////////////////////////////////////////////////////////
/// Set a files modification and access times. If actime = 0 it will be
/// set to the modtime. Returns 0 on success and -1 in case of error.
int TUnixSystem::Utime(const char *file, Long_t modtime, Long_t actime)
{
if (!actime)
actime = modtime;
struct utimbuf t;
t.actime = (time_t)actime;
t.modtime = (time_t)modtime;
return ::utime(file, &t);
}
////////////////////////////////////////////////////////////////////////////////
/// Find location of file "wfil" in a search path.
/// The search path is specified as a : separated list of directories.
/// Return value is pointing to wfile for compatibility with
/// Which(const char*,const char*,EAccessMode) version.
const char *TUnixSystem::FindFile(const char *search, TString& wfil, EAccessMode mode)
{
TString show;
if (gEnv->GetValue("Root.ShowPath", 0))
show.Form("Which: %s =", wfil.Data());
gSystem->ExpandPathName(wfil);
if (wfil[0] == '/') {
#if defined(R__SEEK64)
struct stat64 finfo;
if (access(wfil.Data(), mode) == 0 &&
stat64(wfil.Data(), &finfo) == 0 && S_ISREG(finfo.st_mode)) {
#else
struct stat finfo;
if (access(wfil.Data(), mode) == 0 &&
stat(wfil.Data(), &finfo) == 0 && S_ISREG(finfo.st_mode)) {
#endif
if (show != "")
Printf("%s %s", show.Data(), wfil.Data());
return wfil.Data();
}
if (show != "")
Printf("%s <not found>", show.Data());
wfil = "";
return 0;
}
if (search == 0)
search = ".";
TString apwd(gSystem->WorkingDirectory());
apwd += "/";
for (const char* ptr = search; *ptr;) {
TString name;
if (*ptr != '/' && *ptr !='$' && *ptr != '~')
name = apwd;
const char* posEndOfPart = strchr(ptr, ':');
if (posEndOfPart) {
name.Append(ptr, posEndOfPart - ptr);
ptr = posEndOfPart + 1; // skip ':'
} else {
name.Append(ptr);
ptr += strlen(ptr);
}
if (!name.EndsWith("/"))
name += '/';
name += wfil;
gSystem->ExpandPathName(name);
#if defined(R__SEEK64)
struct stat64 finfo;
if (access(name.Data(), mode) == 0 &&
stat64(name.Data(), &finfo) == 0 && S_ISREG(finfo.st_mode)) {
#else
struct stat finfo;
if (access(name.Data(), mode) == 0 &&
stat(name.Data(), &finfo) == 0 && S_ISREG(finfo.st_mode)) {
#endif
if (show != "")
Printf("%s %s", show.Data(), name.Data());
wfil = name;
return wfil.Data();
}
}
if (show != "")
Printf("%s <not found>", show.Data());
wfil = "";
return 0;
}
//---- Users & Groups ----------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Returns the user's id. If user = 0, returns current user's id.
Int_t TUnixSystem::GetUid(const char *user)
{
if (!user || !user[0])
return getuid();
else {
struct passwd *apwd = getpwnam(user);
if (apwd)
return apwd->pw_uid;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Returns the effective user id. The effective id corresponds to the
/// set id bit on the file being executed.
Int_t TUnixSystem::GetEffectiveUid()
{
return geteuid();
}
////////////////////////////////////////////////////////////////////////////////
/// Returns the group's id. If group = 0, returns current user's group.
Int_t TUnixSystem::GetGid(const char *group)
{
if (!group || !group[0])
return getgid();
else {
struct group *grp = getgrnam(group);
if (grp)
return grp->gr_gid;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Returns the effective group id. The effective group id corresponds
/// to the set id bit on the file being executed.
Int_t TUnixSystem::GetEffectiveGid()
{
return getegid();
}
////////////////////////////////////////////////////////////////////////////////
/// Returns all user info in the UserGroup_t structure. The returned
/// structure must be deleted by the user. In case of error 0 is returned.
UserGroup_t *TUnixSystem::GetUserInfo(Int_t uid)
{
typedef std::map<Int_t /*uid*/, UserGroup_t> UserInfoCache_t;
static UserInfoCache_t gUserInfo;
UserInfoCache_t::const_iterator iUserInfo = gUserInfo.find(uid);
if (iUserInfo != gUserInfo.end())
return new UserGroup_t(iUserInfo->second);
struct passwd *apwd = getpwuid(uid);
if (apwd) {
UserGroup_t *ug = new UserGroup_t;
ug->fUid = apwd->pw_uid;
ug->fGid = apwd->pw_gid;
ug->fUser = apwd->pw_name;
ug->fPasswd = apwd->pw_passwd;
ug->fRealName = apwd->pw_gecos;
ug->fShell = apwd->pw_shell;
UserGroup_t *gr = GetGroupInfo(apwd->pw_gid);
if (gr) ug->fGroup = gr->fGroup;
delete gr;
gUserInfo[uid] = *ug;
return ug;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Returns all user info in the UserGroup_t structure. If user = 0, returns
/// current user's id info. The returned structure must be deleted by the
/// user. In case of error 0 is returned.
UserGroup_t *TUnixSystem::GetUserInfo(const char *user)
{
return GetUserInfo(GetUid(user));
}
////////////////////////////////////////////////////////////////////////////////
/// Returns all group info in the UserGroup_t structure. The only active
/// fields in the UserGroup_t structure for this call are:
/// fGid and fGroup
/// The returned structure must be deleted by the user. In case of
/// error 0 is returned.
UserGroup_t *TUnixSystem::GetGroupInfo(Int_t gid)
{
struct group *grp = getgrgid(gid);
if (grp) {
UserGroup_t *gr = new UserGroup_t;
gr->fUid = 0;
gr->fGid = grp->gr_gid;
gr->fGroup = grp->gr_name;
return gr;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Returns all group info in the UserGroup_t structure. The only active
/// fields in the UserGroup_t structure for this call are:
/// fGid and fGroup
/// If group = 0, returns current user's group. The returned structure
/// must be deleted by the user. In case of error 0 is returned.
UserGroup_t *TUnixSystem::GetGroupInfo(const char *group)
{
return GetGroupInfo(GetGid(group));
}
//---- environment manipulation ------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Set environment variable.
void TUnixSystem::Setenv(const char *name, const char *value)
{
::setenv(name, value, 1);
}
////////////////////////////////////////////////////////////////////////////////
/// Get environment variable.
const char *TUnixSystem::Getenv(const char *name)
{
return ::getenv(name);
}
////////////////////////////////////////////////////////////////////////////////
/// Unset environment variable.
void TUnixSystem::Unsetenv(const char *name)
{
::unsetenv(name);
}
//---- Processes ---------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Execute a command.
int TUnixSystem::Exec(const char *shellcmd)
{
return ::system(shellcmd);
}
////////////////////////////////////////////////////////////////////////////////
/// Open a pipe.
FILE *TUnixSystem::OpenPipe(const char *command, const char *mode)
{
return ::popen(command, mode);
}
////////////////////////////////////////////////////////////////////////////////
/// Close the pipe.
int TUnixSystem::ClosePipe(FILE *pipe)
{
return ::pclose(pipe);
}
////////////////////////////////////////////////////////////////////////////////
/// Get process id.
int TUnixSystem::GetPid()
{
return ::getpid();
}
////////////////////////////////////////////////////////////////////////////////
/// Exit the application.
void TUnixSystem::Exit(int code, Bool_t mode)
{
// Insures that the files and sockets are closed before any library is unloaded
// and before emptying CINT.
if (gROOT) {
gROOT->EndOfProcessCleanups();
} else if (gInterpreter) {
gInterpreter->ResetGlobals();
}
if (mode)
::exit(code);
else
::_exit(code);
}
////////////////////////////////////////////////////////////////////////////////
/// Abort the application.
void TUnixSystem::Abort(int)
{
::abort();
}
#ifdef R__MACOSX
/// Use CoreSymbolication to retrieve the stacktrace.
#include <mach/mach.h>
extern "C" {
// Adapted from https://github.com/mountainstorm/CoreSymbolication
// Under the hood the framework basically just calls through to a set of C++ libraries
typedef struct {
void* csCppData;
void* csCppObj;
} CSTypeRef;
typedef CSTypeRef CSSymbolicatorRef;
typedef CSTypeRef CSSourceInfoRef;
typedef CSTypeRef CSSymbolOwnerRef;
typedef CSTypeRef CSSymbolRef;
CSSymbolicatorRef CSSymbolicatorCreateWithPid(pid_t pid);
CSSymbolRef CSSymbolicatorGetSymbolWithAddressAtTime(CSSymbolicatorRef cs, vm_address_t addr, uint64_t time);
CSSourceInfoRef CSSymbolicatorGetSourceInfoWithAddressAtTime(CSSymbolicatorRef cs, vm_address_t addr, uint64_t time);
const char* CSSymbolGetName(CSSymbolRef sym);
CSSymbolOwnerRef CSSymbolGetSymbolOwner(CSSymbolRef sym);
const char* CSSymbolOwnerGetPath(CSSymbolOwnerRef symbol);
const char* CSSourceInfoGetPath(CSSourceInfoRef info);
int CSSourceInfoGetLineNumber(CSSourceInfoRef info);
}
bool CSTypeRefIdValid(CSTypeRef ref) {
return ref.csCppData || ref.csCppObj;
}
void macosx_backtrace() {
void* addrlist[kMAX_BACKTRACE_DEPTH];
// retrieve current stack addresses
int numstacks = backtrace( addrlist, sizeof( addrlist ) / sizeof( void* ));
CSSymbolicatorRef symbolicator = CSSymbolicatorCreateWithPid(getpid());
// skip TUnixSystem::Backtrace(), macosx_backtrace()
static const int skipFrames = 2;
for (int i = skipFrames; i < numstacks; ++i) {
// No debug info, try to get at least the symbol name.
CSSymbolRef sym = CSSymbolicatorGetSymbolWithAddressAtTime(symbolicator,
(vm_address_t)addrlist[i],
0x80000000u);
CSSymbolOwnerRef symOwner = CSSymbolGetSymbolOwner(sym);
if (const char* libPath = CSSymbolOwnerGetPath(symOwner)) {
printf("[%s]", libPath);
} else {
printf("[<unknown binary>]");
}
if (const char* symname = CSSymbolGetName(sym)) {
printf(" %s", symname);
}
CSSourceInfoRef sourceInfo
= CSSymbolicatorGetSourceInfoWithAddressAtTime(symbolicator,
(vm_address_t)addrlist[i],
0x80000000u /*"now"*/);
if (const char* sourcePath = CSSourceInfoGetPath(sourceInfo)) {
printf(" %s:%d", sourcePath, (int)CSSourceInfoGetLineNumber(sourceInfo));
} else {
printf(" (no debug info)");
}
printf("\n");
}
}
#endif // R__MACOSX
////////////////////////////////////////////////////////////////////////////////
/// Print a stack trace.
void TUnixSystem::StackTrace()
{
if (!gEnv->GetValue("Root.Stacktrace", 1))
return;
#ifndef R__MACOSX
TString gdbscript = gEnv->GetValue("Root.StacktraceScript", "");
gdbscript = gdbscript.Strip();
if (gdbscript != "") {
if (AccessPathName(gdbscript, kReadPermission)) {
fprintf(stderr, "Root.StacktraceScript %s does not exist\n", gdbscript.Data());
gdbscript = "";
}
}
if (gdbscript == "") {
gdbscript = "gdb-backtrace.sh";
gSystem->PrependPathName(TROOT::GetEtcDir(), gdbscript);
if (AccessPathName(gdbscript, kReadPermission)) {
fprintf(stderr, "Error in <TUnixSystem::StackTrace> script %s is missing\n", gdbscript.Data());
return;
}
}
gdbscript += " ";
TString gdbmess = gEnv->GetValue("Root.StacktraceMessage", "");
gdbmess = gdbmess.Strip();
std::cout.flush();
fflush(stdout);
std::cerr.flush();
fflush(stderr);
int fd = STDERR_FILENO;
const char *message = " Generating stack trace...\n";
if (fd && message) { } // remove unused warning (remove later)
if (gApplication && !strcmp(gApplication->GetName(), "TRint"))
Getlinem(kCleanUp, 0);
#if defined(USE_GDB_STACK_TRACE)
char *gdb = Which(Getenv("PATH"), "gdb", kExecutePermission);
if (!gdb) {
fprintf(stderr, "gdb not found, need it for stack trace\n");
return;
}
// write custom message file
TString gdbmessf = "gdb-message";
if (gdbmess != "") {
FILE *f = TempFileName(gdbmessf);
fprintf(f, "%s\n", gdbmess.Data());
fclose(f);
}
// use gdb to get stack trace
gdbscript += GetExePath();
gdbscript += " ";
gdbscript += GetPid();
if (gdbmess != "") {
gdbscript += " ";
gdbscript += gdbmessf;
}
gdbscript += " 1>&2";
Exec(gdbscript);
delete [] gdb;
return;
#elif defined(R__AIX)
TString script = "procstack ";
script += GetPid();
Exec(script);
return;
#elif defined(R__SOLARIS)
char *cppfilt = Which(Getenv("PATH"), "c++filt", kExecutePermission);
TString script = "pstack ";
script += GetPid();
if (cppfilt) {
script += " | ";
script += cppfilt;
delete [] cppfilt;
}
Exec(script);
return;
#elif defined(HAVE_BACKTRACE_SYMBOLS_FD) && defined(HAVE_DLADDR) // linux + MacOS X >= 10.5
// we could have used backtrace_symbols_fd, except its output
// format is pretty bad, so recode that here :-(
// take care of demangling
Bool_t demangle = kTRUE;
// check for c++filt
const char *cppfilt = "c++filt";
const char *cppfiltarg = "";
#ifdef R__B64
const char *format1 = " 0x%016lx in %.200s %s 0x%lx from %.200s\n";
#ifdef R__MACOSX
const char *format2 = " 0x%016lx in %.200s\n";
#else
const char *format2 = " 0x%016lx in %.200s at %.200s from %.200s\n";
#endif
const char *format3 = " 0x%016lx in %.200s from %.200s\n";
const char *format4 = " 0x%016lx in <unknown function>\n";
#else
const char *format1 = " 0x%08lx in %.200s %s 0x%lx from %.200s\n";
#ifdef R__MACOSX
const char *format2 = " 0x%08lx in %.200s\n";
#else
const char *format2 = " 0x%08lx in %.200s at %.200s from %.200s\n";
#endif
const char *format3 = " 0x%08lx in %.200s from %.200s\n";
const char *format4 = " 0x%08lx in <unknown function>\n";
#endif
char *filter = Which(Getenv("PATH"), cppfilt, kExecutePermission);
if (!filter)
demangle = kFALSE;
#if (__GNUC__ >= 3)
// try finding supported format option for g++ v3
if (filter) {
FILE *p = OpenPipe(TString::Format("%s --help 2>&1", filter), "r");
TString help;
while (help.Gets(p)) {
if (help.Index("gnu-v3") != kNPOS) {
cppfiltarg = "--format=gnu-v3";
break;
} else if (help.Index("gnu-new-abi") != kNPOS) {
cppfiltarg = "--format=gnu-new-abi";
break;
}
}
ClosePipe(p);
}
#endif
// gdb-backtrace.sh uses gdb to produce a backtrace. See if it is available.
// If it is, use it. If not proceed as before.
#if (defined(R__LINUX) && !defined(R__WINGCC))
// Declare the process that will be generating the stacktrace
// For more see: http://askubuntu.com/questions/41629/after-upgrade-gdb-wont-attach-to-process
#ifdef PR_SET_PTRACER
prctl(PR_SET_PTRACER, getpid(), 0, 0, 0);
#endif
#endif
char *gdb = Which(Getenv("PATH"), "gdb", kExecutePermission);
if (gdb) {
// write custom message file
TString gdbmessf = "gdb-message";
if (gdbmess != "") {
FILE *f = TempFileName(gdbmessf);
fprintf(f, "%s\n", gdbmess.Data());
fclose(f);
}
// use gdb to get stack trace
#ifdef R__MACOSX
gdbscript += GetExePath();
gdbscript += " ";
#endif
gdbscript += GetPid();
if (gdbmess != "") {
gdbscript += " ";
gdbscript += gdbmessf;
}
gdbscript += " 1>&2";
Exec(gdbscript);
delete [] gdb;
} else {
// addr2line uses debug info to convert addresses into file names
// and line numbers
#ifdef R__MACOSX
char *addr2line = Which(Getenv("PATH"), "atos", kExecutePermission);
#else
char *addr2line = Which(Getenv("PATH"), "addr2line", kExecutePermission);
#endif
if (addr2line) {
// might take some time so tell what we are doing...
if (write(fd, message, strlen(message)) < 0)
Warning("StackTrace", "problems writing line numbers (errno: %d)", TSystem::GetErrno());
}
// open tmp file for demangled stack trace
TString tmpf1 = "gdb-backtrace";
std::ofstream file1;
if (demangle) {
FILE *f = TempFileName(tmpf1);
if (f) fclose(f);
file1.open(tmpf1);
if (!file1) {
Error("StackTrace", "could not open file %s", tmpf1.Data());
Unlink(tmpf1);
demangle = kFALSE;
}
}
#ifdef R__MACOSX
if (addr2line)
demangle = kFALSE; // atos always demangles
#endif
char buffer[4096];
void *trace[kMAX_BACKTRACE_DEPTH];
int depth = backtrace(trace, kMAX_BACKTRACE_DEPTH);
for (int n = 5; n < depth; n++) {
ULong_t addr = (ULong_t) trace[n];
Dl_info info;
if (dladdr(trace[n], &info) && info.dli_fname && info.dli_fname[0]) {
const char *libname = info.dli_fname;
const char *symname = (info.dli_sname && info.dli_sname[0]) ?
info.dli_sname : "<unknown>";
ULong_t libaddr = (ULong_t) info.dli_fbase;
ULong_t symaddr = (ULong_t) info.dli_saddr;
Bool_t gte = (addr >= symaddr);
ULong_t diff = (gte) ? addr - symaddr : symaddr - addr;
if (addr2line && symaddr) {
Bool_t nodebug = kTRUE;
#ifdef R__MACOSX
if (libaddr) { } // use libaddr
#if defined(MAC_OS_X_VERSION_10_10)
snprintf(buffer, sizeof(buffer), "%s -p %d 0x%016lx", addr2line, GetPid(), addr);
#elif defined(MAC_OS_X_VERSION_10_9)
// suppress deprecation warning with opti
snprintf(buffer, sizeof(buffer), "%s -d -p %d 0x%016lx", addr2line, GetPid(), addr);
#else
snprintf(buffer, sizeof(buffer), "%s -p %d 0x%016lx", addr2line, GetPid(), addr);
#endif
#else
ULong_t offset = (addr >= libaddr) ? addr - libaddr :
libaddr - addr;
TString name = TString(libname);
Bool_t noPath = kFALSE;
Bool_t noShare = kTRUE;
if (name[0] != '/') noPath = kTRUE;
if (name.Contains(".so") || name.Contains(".sl")) noShare = kFALSE;
if (noShare) offset = addr;
if (noPath) name = "`which " + name + "`";
snprintf(buffer, sizeof(buffer), "%s -e %s 0x%016lx", addr2line, name.Data(), offset);
#endif
if (FILE *pf = ::popen(buffer, "r")) {
char buf[2048];
if (fgets(buf, 2048, pf)) {
buf[strlen(buf)-1] = 0; // remove trailing \n
if (strncmp(buf, "??", 2)) {
#ifdef R__MACOSX
snprintf(buffer, sizeof(buffer), format2, addr, buf);
#else
snprintf(buffer, sizeof(buffer), format2, addr, symname, buf, libname);
#endif
nodebug = kFALSE;
}
}
::pclose(pf);
}
if (nodebug)
snprintf(buffer, sizeof(buffer), format1, addr, symname,
gte ? "+" : "-", diff, libname);
} else {
if (symaddr)
snprintf(buffer, sizeof(buffer), format1, addr, symname,
gte ? "+" : "-", diff, libname);
else
snprintf(buffer, sizeof(buffer), format3, addr, symname, libname);
}
} else {
snprintf(buffer, sizeof(buffer), format4, addr);
}
if (demangle)
file1 << buffer;
else
if (write(fd, buffer, ::strlen(buffer)) < 0)
Warning("StackTrace", "problems writing buffer (errno: %d)", TSystem::GetErrno());
}
if (demangle) {
TString tmpf2 = "gdb-backtrace";
FILE *f = TempFileName(tmpf2);
if (f) fclose(f);
file1.close();
snprintf(buffer, sizeof(buffer), "%s %s < %s > %s", filter, cppfiltarg, tmpf1.Data(), tmpf2.Data());
Exec(buffer);
std::ifstream file2(tmpf2);
TString line;
while (file2) {
line = "";
line.ReadString(file2);
if (write(fd, line.Data(), line.Length()) < 0)
Warning("StackTrace", "problems writing line (errno: %d)", TSystem::GetErrno());
}
file2.close();
Unlink(tmpf1);
Unlink(tmpf2);
}
delete [] addr2line;
}
delete [] filter;
#elif defined(HAVE_EXCPT_H) && defined(HAVE_PDSC_H) && \
defined(HAVE_RLD_INTERFACE_H) // tru64
// Tru64 stack walk. Uses the exception handling library and the
// run-time linker's core functions (loader(5)). FIXME: Tru64
// should have _RLD_DLADDR like IRIX below. Verify and update.
char buffer [128];
sigcontext context;
int rc = 0;
exc_capture_context (&context);
while (!rc && context.sc_pc) {
// FIXME: Elf32?
pdsc_crd *func, *base, *crd
= exc_remote_lookup_function_entry(0, 0, context.sc_pc, 0, &func, &base);
Elf32_Addr addr = PDSC_CRD_BEGIN_ADDRESS(base, func);
// const char *name = _rld_address_to_name(addr);
const char *name = "<unknown function>";
sprintf(buffer, " 0x%012lx %.200s + 0x%lx\n",
context.sc_pc, name, context.sc_pc - addr);
write(fd, buffer, ::strlen(buffer));
rc = exc_virtual_unwind(0, &context);
}
#endif
#else //R__MACOSX
macosx_backtrace();
#endif //R__MACOSX
}
//---- System Logging ----------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Open connection to system log daemon. For the use of the options and
/// facility see the Unix openlog man page.
void TUnixSystem::Openlog(const char *name, Int_t options, ELogFacility facility)
{
int fac = 0;
switch (facility) {
case kLogLocal0:
fac = LOG_LOCAL0;
break;
case kLogLocal1:
fac = LOG_LOCAL1;
break;
case kLogLocal2:
fac = LOG_LOCAL2;
break;
case kLogLocal3:
fac = LOG_LOCAL3;
break;
case kLogLocal4:
fac = LOG_LOCAL4;
break;
case kLogLocal5:
fac = LOG_LOCAL5;
break;
case kLogLocal6:
fac = LOG_LOCAL6;
break;
case kLogLocal7:
fac = LOG_LOCAL7;
break;
}
::openlog(name, options, fac);
}
////////////////////////////////////////////////////////////////////////////////
/// Send mess to syslog daemon. Level is the logging level and mess the
/// message that will be written on the log.
void TUnixSystem::Syslog(ELogLevel level, const char *mess)
{
// ELogLevel matches exactly the Unix values.
::syslog(level, "%s", mess);
}
////////////////////////////////////////////////////////////////////////////////
/// Close connection to system log daemon.
void TUnixSystem::Closelog()
{
::closelog();
}
//---- Standard output redirection ---------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Redirect standard output (stdout, stderr) to the specified file.
/// If the file argument is 0 the output is set again to stderr, stdout.
/// The second argument specifies whether the output should be added to the
/// file ("a", default) or the file be truncated before ("w").
/// This function saves internally the current state into a static structure.
/// The call can be made reentrant by specifying the opaque structure pointed
/// by 'h', which is filled with the relevant information. The handle 'h'
/// obtained on the first call must then be used in any subsequent call,
/// included ShowOutput, to display the redirected output.
/// Returns 0 on success, -1 in case of error.
Int_t TUnixSystem::RedirectOutput(const char *file, const char *mode,
RedirectHandle_t *h)
{
// Instance to be used if the caller does not passes 'h'
static RedirectHandle_t loch;
Int_t rc = 0;
// Which handle to use ?
RedirectHandle_t *xh = (h) ? h : &loch;
if (file) {
// Save the paths
Bool_t outdone = kFALSE;
if (xh->fStdOutTty.IsNull()) {
const char *tty = ttyname(STDOUT_FILENO);
if (tty) {
xh->fStdOutTty = tty;
} else {
if ((xh->fStdOutDup = dup(STDOUT_FILENO)) < 0) {
SysError("RedirectOutput", "could not 'dup' stdout (errno: %d)", TSystem::GetErrno());
return -1;
}
outdone = kTRUE;
}
}
if (xh->fStdErrTty.IsNull()) {
const char *tty = ttyname(STDERR_FILENO);
if (tty) {
xh->fStdErrTty = tty;
} else {
if ((xh->fStdErrDup = dup(STDERR_FILENO)) < 0) {
SysError("RedirectOutput", "could not 'dup' stderr (errno: %d)", TSystem::GetErrno());
if (outdone && dup2(xh->fStdOutDup, STDOUT_FILENO) < 0) {
Warning("RedirectOutput", "could not restore stdout (back to original redirected"
" file) (errno: %d)", TSystem::GetErrno());
}
return -1;
}
}
}
// Make sure mode makes sense; default "a"
const char *m = (mode[0] == 'a' || mode[0] == 'w') ? mode : "a";
// Current file size
xh->fReadOffSet = 0;
if (m[0] == 'a') {
// If the file exists, save the current size
FileStat_t st;
if (!gSystem->GetPathInfo(file, st))
xh->fReadOffSet = (st.fSize > 0) ? st.fSize : xh->fReadOffSet;
}
xh->fFile = file;
// Redirect stdout & stderr
if (freopen(file, m, stdout) == 0) {
SysError("RedirectOutput", "could not freopen stdout (errno: %d)", TSystem::GetErrno());
return -1;
}
if (freopen(file, m, stderr) == 0) {
SysError("RedirectOutput", "could not freopen stderr (errno: %d)", TSystem::GetErrno());
if (freopen(xh->fStdOutTty.Data(), "a", stdout) == 0)
SysError("RedirectOutput", "could not restore stdout (errno: %d)", TSystem::GetErrno());
return -1;
}
} else {
// Restore stdout & stderr
fflush(stdout);
if (!(xh->fStdOutTty.IsNull())) {
if (freopen(xh->fStdOutTty.Data(), "a", stdout) == 0) {
SysError("RedirectOutput", "could not restore stdout (errno: %d)", TSystem::GetErrno());
rc = -1;
}
xh->fStdOutTty = "";
} else {
if (close(STDOUT_FILENO) != 0) {
SysError("RedirectOutput",
"problems closing STDOUT_FILENO (%d) before 'dup2' (errno: %d)",
STDOUT_FILENO, TSystem::GetErrno());
rc = -1;
}
if (dup2(xh->fStdOutDup, STDOUT_FILENO) < 0) {
SysError("RedirectOutput", "could not restore stdout (back to original redirected"
" file) (errno: %d)", TSystem::GetErrno());
rc = -1;
}
if (close(xh->fStdOutDup) != 0) {
SysError("RedirectOutput",
"problems closing temporary 'out' descriptor %d (errno: %d)",
TSystem::GetErrno(), xh->fStdOutDup);
rc = -1;
}
}
fflush(stderr);
if (!(xh->fStdErrTty.IsNull())) {
if (freopen(xh->fStdErrTty.Data(), "a", stderr) == 0) {
SysError("RedirectOutput", "could not restore stderr (errno: %d)", TSystem::GetErrno());
rc = -1;
}
xh->fStdErrTty = "";
} else {
if (close(STDERR_FILENO) != 0) {
SysError("RedirectOutput",
"problems closing STDERR_FILENO (%d) before 'dup2' (errno: %d)",
STDERR_FILENO, TSystem::GetErrno());
rc = -1;
}
if (dup2(xh->fStdErrDup, STDERR_FILENO) < 0) {
SysError("RedirectOutput", "could not restore stderr (back to original redirected"
" file) (errno: %d)", TSystem::GetErrno());
rc = -1;
}
if (close(xh->fStdErrDup) != 0) {
SysError("RedirectOutput",
"problems closing temporary 'err' descriptor %d (errno: %d)",
TSystem::GetErrno(), xh->fStdErrDup);
rc = -1;
}
}
// Reset the static instance, if using that
if (xh == &loch)
xh->Reset();
}
return rc;
}
//---- dynamic loading and linking ---------------------------------------------
////////////////////////////////////////////////////////////////////////////////
///dynamic linking of module
Func_t TUnixSystem::DynFindSymbol(const char * /*module*/, const char *entry)
{
return TSystem::DynFindSymbol("*", entry);
}
////////////////////////////////////////////////////////////////////////////////
/// Load a shared library. Returns 0 on successful loading, 1 in
/// case lib was already loaded and -1 in case lib does not exist
/// or in case of error.
int TUnixSystem::Load(const char *module, const char *entry, Bool_t system)
{
return TSystem::Load(module, entry, system);
}
////////////////////////////////////////////////////////////////////////////////
/// Unload a shared library.
void TUnixSystem::Unload(const char *module)
{
if (module) { TSystem::Unload(module); }
}
////////////////////////////////////////////////////////////////////////////////
/// List symbols in a shared library.
void TUnixSystem::ListSymbols(const char * /*module*/, const char * /*regexp*/)
{
Error("ListSymbols", "not yet implemented");
}
////////////////////////////////////////////////////////////////////////////////
/// List all loaded shared libraries.
void TUnixSystem::ListLibraries(const char *regexp)
{
TSystem::ListLibraries(regexp);
}
////////////////////////////////////////////////////////////////////////////////
/// Get list of shared libraries loaded at the start of the executable.
/// Returns 0 in case list cannot be obtained or in case of error.
const char *TUnixSystem::GetLinkedLibraries()
{
static TString linkedLibs;
static Bool_t once = kFALSE;
R__LOCKGUARD2(gSystemMutex);
if (!linkedLibs.IsNull())
return linkedLibs;
if (once)
return 0;
#if !defined(R__MACOSX)
const char *exe = GetExePath();
if (!exe || !*exe)
return 0;
#endif
#if defined(R__MACOSX)
DylibAdded(0, 0);
linkedLibs = gLinkedDylibs;
#if 0
FILE *p = OpenPipe(TString::Format("otool -L %s", exe), "r");
TString otool;
while (otool.Gets(p)) {
TString delim(" \t");
TObjArray *tok = otool.Tokenize(delim);
TString dylib = ((TObjString*)tok->At(0))->String();
if (dylib.EndsWith(".dylib") && !dylib.Contains("/libSystem.B.dylib")) {
if (!linkedLibs.IsNull())
linkedLibs += " ";
linkedLibs += dylib;
}
delete tok;
}
if (p) {
ClosePipe(p);
}
#endif
#elif defined(R__LINUX) || defined(R__SOLARIS) || defined(R__AIX)
#if defined(R__WINGCC )
const char *cLDD="cygcheck";
const char *cSOEXT=".dll";
size_t lenexe = strlen(exe);
if (strcmp(exe + lenexe - 4, ".exe")
&& strcmp(exe + lenexe - 4, ".dll")) {
// it's not a dll and exe doesn't end on ".exe";
// need to add it for cygcheck to find it:
char* longerexe = new char[lenexe + 5];
strlcpy(longerexe, exe,lenexe+5);
strlcat(longerexe, ".exe",lenexe+5);
delete [] exe;
exe = longerexe;
}
TRegexp sovers = "\\.so\\.[0-9]+";
#else
const char *cLDD="ldd";
#if defined(R__AIX)
const char *cSOEXT=".a";
TRegexp sovers = "\\.a\\.[0-9]+";
#else
const char *cSOEXT=".so";
TRegexp sovers = "\\.so\\.[0-9]+";
#endif
#endif
FILE *p = OpenPipe(TString::Format("%s '%s'", cLDD, exe), "r");
if (p) {
TString ldd;
while (ldd.Gets(p)) {
TString delim(" \t");
TObjArray *tok = ldd.Tokenize(delim);
// expected format:
// libCore.so => /home/rdm/root/lib/libCore.so (0x40017000)
TObjString *solibName = (TObjString*)tok->At(2);
if (!solibName) {
// case where there is only one name of the list:
// /usr/platform/SUNW,UltraAX-i2/lib/libc_psr.so.1
solibName = (TObjString*)tok->At(0);
}
if (solibName) {
TString solib = solibName->String();
Ssiz_t idx = solib.Index(sovers);
if (solib.EndsWith(cSOEXT) || idx != kNPOS) {
if (idx != kNPOS)
solib.Remove(idx+3);
if (!AccessPathName(solib, kReadPermission)) {
if (!linkedLibs.IsNull())
linkedLibs += " ";
linkedLibs += solib;
}
}
}
delete tok;
}
ClosePipe(p);
}
#endif
once = kTRUE;
if (linkedLibs.IsNull())
return 0;
return linkedLibs;
}
//---- Time & Date -------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Get current time in milliseconds since 0:00 Jan 1 1995.
TTime TUnixSystem::Now()
{
return UnixNow();
}
////////////////////////////////////////////////////////////////////////////////
/// Handle and dispatch timers. If mode = kTRUE dispatch synchronous
/// timers else a-synchronous timers.
Bool_t TUnixSystem::DispatchTimers(Bool_t mode)
{
if (!fTimers) return kFALSE;
fInsideNotify = kTRUE;
TOrdCollectionIter it((TOrdCollection*)fTimers);
TTimer *t;
Bool_t timedout = kFALSE;
while ((t = (TTimer *) it.Next())) {
// NB: the timer resolution is added in TTimer::CheckTimer()
Long64_t now = UnixNow();
if (mode && t->IsSync()) {
if (t->CheckTimer(now))
timedout = kTRUE;
} else if (!mode && t->IsAsync()) {
if (t->CheckTimer(now)) {
UnixSetitimer(NextTimeOut(kFALSE));
timedout = kTRUE;
}
}
}
fInsideNotify = kFALSE;
return timedout;
}
////////////////////////////////////////////////////////////////////////////////
/// Add timer to list of system timers.
void TUnixSystem::AddTimer(TTimer *ti)
{
TSystem::AddTimer(ti);
ResetTimer(ti);
}
////////////////////////////////////////////////////////////////////////////////
/// Remove timer from list of system timers.
TTimer *TUnixSystem::RemoveTimer(TTimer *ti)
{
if (!ti) return 0;
R__LOCKGUARD2(gSystemMutex);
TTimer *t = TSystem::RemoveTimer(ti);
if (ti->IsAsync())
UnixSetitimer(NextTimeOut(kFALSE));
return t;
}
////////////////////////////////////////////////////////////////////////////////
/// Reset a-sync timer.
void TUnixSystem::ResetTimer(TTimer *ti)
{
if (!fInsideNotify && ti && ti->IsAsync())
UnixSetitimer(NextTimeOut(kFALSE));
}
//---- RPC ---------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Get Internet Protocol (IP) address of host. Returns an TInetAddress
/// object. To see if the hostname lookup was successfull call
/// TInetAddress::IsValid().
TInetAddress TUnixSystem::GetHostByName(const char *hostname)
{
TInetAddress ia;
struct addrinfo hints;
struct addrinfo *result, *rp;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET; // only IPv4
hints.ai_socktype = 0; // any socket type
hints.ai_protocol = 0; // any protocol
hints.ai_flags = AI_CANONNAME; // get canonical name
#ifdef R__MACOSX
// Anything ending on ".local" causes a 5 second delay in getaddrinfo().
// See e.g. https://apple.stackexchange.com/questions/175320/why-is-my-hostname-resolution-taking-so-long
// Only reasonable solution: remove the "domain" part if it's ".local".
size_t lenHostname = strlen(hostname);
std::string hostnameWithoutLocal{hostname};
if (lenHostname > 6 && !strcmp(hostname + lenHostname - 6, ".local")) {
hostnameWithoutLocal.erase(lenHostname - 6);
hostname = hostnameWithoutLocal.c_str();
}
#endif
// obsolete gethostbyname() replaced by getaddrinfo()
int rc = getaddrinfo(hostname, nullptr, &hints, &result);
if (rc != 0) {
if (rc == EAI_NONAME) {
if (gDebug > 0) Error("GetHostByName", "unknown host '%s'", hostname);
ia.fHostname = "UnNamedHost";
} else {
Error("GetHostByName", "getaddrinfo failed for '%s': %s", hostname, gai_strerror(rc));
ia.fHostname = "UnknownHost";
}
return ia;
}
std::string hostcanon(result->ai_canonname ? result->ai_canonname : hostname);
ia.fHostname = hostcanon.data();
ia.fFamily = result->ai_family;
ia.fAddresses[0] = ntohl(((struct sockaddr_in *)(result->ai_addr))->sin_addr.s_addr);
// with getaddrinfo() no way to get list of aliases for a hostname
if (hostcanon.compare(hostname) != 0) ia.AddAlias(hostname);
// check on numeric hostname
char tmp[sizeof(struct in_addr)];
if (inet_pton(AF_INET, hostcanon.data(), tmp) == 1) {
char hbuf[NI_MAXHOST];
if (getnameinfo(result->ai_addr, result->ai_addrlen, hbuf, sizeof(hbuf), nullptr, 0, 0) == 0)
ia.fHostname = hbuf;
}
// check other addresses (if exist)
rp = result->ai_next;
for (; rp != nullptr; rp = rp->ai_next) {
UInt_t arp = ntohl(((struct sockaddr_in *)(rp->ai_addr))->sin_addr.s_addr);
if ( !(std::find(ia.fAddresses.begin(), ia.fAddresses.end(), arp) != ia.fAddresses.end()) )
ia.AddAddress(arp);
}
freeaddrinfo(result);
return ia;
}
////////////////////////////////////////////////////////////////////////////////
/// Get Internet Protocol (IP) address of host and port #.
TInetAddress TUnixSystem::GetSockName(int sock)
{
struct sockaddr addr;
#if defined(USE_SIZE_T)
size_t len = sizeof(addr);
#elif defined(USE_SOCKLEN_T)
socklen_t len = sizeof(addr);
#else
int len = sizeof(addr);
#endif
TInetAddress ia;
if (getsockname(sock, &addr, &len) == -1) {
SysError("GetSockName", "getsockname failed");
return ia;
}
if (addr.sa_family != AF_INET) return ia; // only IPv4
ia.fFamily = addr.sa_family;
struct sockaddr_in *addrin = (struct sockaddr_in *)&addr;
ia.fPort = ntohs(addrin->sin_port);
ia.fAddresses[0] = ntohl(addrin->sin_addr.s_addr);
char hbuf[NI_MAXHOST];
if (getnameinfo(&addr, sizeof(struct sockaddr), hbuf, sizeof(hbuf), nullptr, 0, 0) != 0) {
Error("GetSockName", "getnameinfo failed");
ia.fHostname = "????";
} else
ia.fHostname = hbuf;
return ia;
}
////////////////////////////////////////////////////////////////////////////////
/// Get Internet Protocol (IP) address of remote host and port #.
TInetAddress TUnixSystem::GetPeerName(int sock)
{
struct sockaddr addr;
#if defined(USE_SIZE_T)
size_t len = sizeof(addr);
#elif defined(USE_SOCKLEN_T)
socklen_t len = sizeof(addr);
#else
int len = sizeof(addr);
#endif
TInetAddress ia;
if (getpeername(sock, &addr, &len) == -1) {
SysError("GetPeerName", "getpeername failed");
return ia;
}
if (addr.sa_family != AF_INET) return ia; // only IPv4
ia.fFamily = addr.sa_family;
struct sockaddr_in *addrin = (struct sockaddr_in *)&addr;
ia.fPort = ntohs(addrin->sin_port);
ia.fAddresses[0] = ntohl(addrin->sin_addr.s_addr);
char hbuf[NI_MAXHOST];
if (getnameinfo(&addr, sizeof(struct sockaddr), hbuf, sizeof(hbuf), nullptr, 0, 0) != 0) {
Error("GetPeerName", "getnameinfo failed");
ia.fHostname = "????";
} else
ia.fHostname = hbuf;
return ia;
}
////////////////////////////////////////////////////////////////////////////////
/// Get port # of internet service.
int TUnixSystem::GetServiceByName(const char *servicename)
{
struct servent *sp;
if ((sp = getservbyname(servicename, kProtocolName)) == 0) {
Error("GetServiceByName", "no service \"%s\" with protocol \"%s\"\n",
servicename, kProtocolName);
return -1;
}
return ntohs(sp->s_port);
}
////////////////////////////////////////////////////////////////////////////////
/// Get name of internet service.
char *TUnixSystem::GetServiceByPort(int port)
{
struct servent *sp;
if ((sp = getservbyport(htons(port), kProtocolName)) == 0) {
//::Error("GetServiceByPort", "no service \"%d\" with protocol \"%s\"",
// port, kProtocolName);
return Form("%d", port);
}
return sp->s_name;
}
////////////////////////////////////////////////////////////////////////////////
/// Connect to service servicename on server servername.
int TUnixSystem::ConnectService(const char *servername, int port,
int tcpwindowsize, const char *protocol)
{
if (!strcmp(servername, "unix")) {
return UnixUnixConnect(port);
} else if (!gSystem->AccessPathName(servername) || servername[0] == '/') {
return UnixUnixConnect(servername);
}
if (!strcmp(protocol, "udp")){
return UnixUdpConnect(servername, port);
}
return UnixTcpConnect(servername, port, tcpwindowsize);
}
////////////////////////////////////////////////////////////////////////////////
/// Open a connection to a service on a server. Returns -1 in case
/// connection cannot be opened.
/// Use tcpwindowsize to specify the size of the receive buffer, it has
/// to be specified here to make sure the window scale option is set (for
/// tcpwindowsize > 65KB and for platforms supporting window scaling).
/// Is called via the TSocket constructor.
int TUnixSystem::OpenConnection(const char *server, int port, int tcpwindowsize, const char *protocol)
{
return ConnectService(server, port, tcpwindowsize, protocol);
}
////////////////////////////////////////////////////////////////////////////////
/// Announce TCP/IP service.
/// Open a socket, bind to it and start listening for TCP/IP connections
/// on the port. If reuse is true reuse the address, backlog specifies
/// how many sockets can be waiting to be accepted.
/// Use tcpwindowsize to specify the size of the receive buffer, it has
/// to be specified here to make sure the window scale option is set (for
/// tcpwindowsize > 65KB and for platforms supporting window scaling).
/// Returns socket fd or -1 if socket() failed, -2 if bind() failed
/// or -3 if listen() failed.
int TUnixSystem::AnnounceTcpService(int port, Bool_t reuse, int backlog,
int tcpwindowsize)
{
return UnixTcpService(port, reuse, backlog, tcpwindowsize);
}
////////////////////////////////////////////////////////////////////////////////
/// Announce UDP service.
int TUnixSystem::AnnounceUdpService(int port, int backlog)
{
return UnixUdpService(port, backlog);
}
////////////////////////////////////////////////////////////////////////////////
/// Announce unix domain service on path "kServerPath/<port>"
int TUnixSystem::AnnounceUnixService(int port, int backlog)
{
return UnixUnixService(port, backlog);
}
////////////////////////////////////////////////////////////////////////////////
/// Announce unix domain service on path 'sockpath'
int TUnixSystem::AnnounceUnixService(const char *sockpath, int backlog)
{
return UnixUnixService(sockpath, backlog);
}
////////////////////////////////////////////////////////////////////////////////
/// Accept a connection. In case of an error return -1. In case
/// non-blocking I/O is enabled and no connections are available
/// return -2.
int TUnixSystem::AcceptConnection(int sock)
{
int soc = -1;
while ((soc = ::accept(sock, 0, 0)) == -1 && GetErrno() == EINTR)
ResetErrno();
if (soc == -1) {
if (GetErrno() == EWOULDBLOCK)
return -2;
else {
SysError("AcceptConnection", "accept");
return -1;
}
}
return soc;
}
////////////////////////////////////////////////////////////////////////////////
/// Close socket.
void TUnixSystem::CloseConnection(int sock, Bool_t force)
{
if (sock < 0) return;
#if !defined(R__AIX) || defined(_AIX41) || defined(_AIX43)
if (force)
::shutdown(sock, 2); // will also close connection of parent
#endif
while (::close(sock) == -1 && GetErrno() == EINTR)
ResetErrno();
}
////////////////////////////////////////////////////////////////////////////////
/// Receive a buffer headed by a length indicator. Length is the size of
/// the buffer. Returns the number of bytes received in buf or -1 in
/// case of error.
int TUnixSystem::RecvBuf(int sock, void *buf, int length)
{
Int_t header;
if (UnixRecv(sock, &header, sizeof(header), 0) > 0) {
int count = ntohl(header);
if (count > length) {
Error("RecvBuf", "record header exceeds buffer size");
return -1;
} else if (count > 0) {
if (UnixRecv(sock, buf, count, 0) < 0) {
Error("RecvBuf", "cannot receive buffer");
return -1;
}
}
return count;
}
return -1;
}
////////////////////////////////////////////////////////////////////////////////
/// Send a buffer headed by a length indicator. Returns length of sent buffer
/// or -1 in case of error.
int TUnixSystem::SendBuf(int sock, const void *buf, int length)
{
Int_t header = htonl(length);
if (UnixSend(sock, &header, sizeof(header), 0) < 0) {
Error("SendBuf", "cannot send header");
return -1;
}
if (length > 0) {
if (UnixSend(sock, buf, length, 0) < 0) {
Error("SendBuf", "cannot send buffer");
return -1;
}
}
return length;
}
////////////////////////////////////////////////////////////////////////////////
/// Receive exactly length bytes into buffer. Use opt to receive out-of-band
/// data or to have a peek at what is in the buffer (see TSocket). Buffer
/// must be able to store at least length bytes. Returns the number of
/// bytes received (can be 0 if other side of connection was closed) or -1
/// in case of error, -2 in case of MSG_OOB and errno == EWOULDBLOCK, -3
/// in case of MSG_OOB and errno == EINVAL and -4 in case of kNoBlock and
/// errno == EWOULDBLOCK. Returns -5 if pipe broken or reset by peer
/// (EPIPE || ECONNRESET).
int TUnixSystem::RecvRaw(int sock, void *buf, int length, int opt)
{
int flag;
switch (opt) {
case kDefault:
flag = 0;
break;
case kOob:
flag = MSG_OOB;
break;
case kPeek:
flag = MSG_PEEK;
break;
case kDontBlock:
flag = -1;
break;
default:
flag = 0;
break;
}
int n;
if ((n = UnixRecv(sock, buf, length, flag)) <= 0) {
if (n == -1 && GetErrno() != EINTR)
Error("RecvRaw", "cannot receive buffer");
return n;
}
return n;
}
////////////////////////////////////////////////////////////////////////////////
/// Send exactly length bytes from buffer. Use opt to send out-of-band
/// data (see TSocket). Returns the number of bytes sent or -1 in case of
/// error. Returns -4 in case of kNoBlock and errno == EWOULDBLOCK.
/// Returns -5 if pipe broken or reset by peer (EPIPE || ECONNRESET).
int TUnixSystem::SendRaw(int sock, const void *buf, int length, int opt)
{
int flag;
switch (opt) {
case kDefault:
flag = 0;
break;
case kOob:
flag = MSG_OOB;
break;
case kDontBlock:
flag = -1;
break;
case kPeek: // receive only option (see RecvRaw)
default:
flag = 0;
break;
}
int n;
if ((n = UnixSend(sock, buf, length, flag)) <= 0) {
if (n == -1 && GetErrno() != EINTR)
Error("SendRaw", "cannot send buffer");
return n;
}
return n;
}
////////////////////////////////////////////////////////////////////////////////
/// Set socket option.
int TUnixSystem::SetSockOpt(int sock, int opt, int val)
{
if (sock < 0) return -1;
switch (opt) {
case kSendBuffer:
if (setsockopt(sock, SOL_SOCKET, SO_SNDBUF, (char*)&val, sizeof(val)) == -1) {
SysError("SetSockOpt", "setsockopt(SO_SNDBUF)");
return -1;
}
break;
case kRecvBuffer:
if (setsockopt(sock, SOL_SOCKET, SO_RCVBUF, (char*)&val, sizeof(val)) == -1) {
SysError("SetSockOpt", "setsockopt(SO_RCVBUF)");
return -1;
}
break;
case kOobInline:
if (setsockopt(sock, SOL_SOCKET, SO_OOBINLINE, (char*)&val, sizeof(val)) == -1) {
SysError("SetSockOpt", "setsockopt(SO_OOBINLINE)");
return -1;
}
break;
case kKeepAlive:
if (setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, (char*)&val, sizeof(val)) == -1) {
SysError("SetSockOpt", "setsockopt(SO_KEEPALIVE)");
return -1;
}
break;
case kReuseAddr:
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char*)&val, sizeof(val)) == -1) {
SysError("SetSockOpt", "setsockopt(SO_REUSEADDR)");
return -1;
}
break;
case kNoDelay:
if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char*)&val, sizeof(val)) == -1) {
SysError("SetSockOpt", "setsockopt(TCP_NODELAY)");
return -1;
}
break;
case kNoBlock:
if (ioctl(sock, FIONBIO, (char*)&val) == -1) {
SysError("SetSockOpt", "ioctl(FIONBIO)");
return -1;
}
break;
case kProcessGroup:
#ifndef R__WINGCC
if (ioctl(sock, SIOCSPGRP, (char*)&val) == -1) {
SysError("SetSockOpt", "ioctl(SIOCSPGRP)");
return -1;
}
#else
Error("SetSockOpt", "ioctl(SIOCGPGRP) not supported on cygwin/gcc");
return -1;
#endif
break;
case kAtMark: // read-only option (see GetSockOpt)
case kBytesToRead: // read-only option
default:
Error("SetSockOpt", "illegal option (%d)", opt);
return -1;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Get socket option.
int TUnixSystem::GetSockOpt(int sock, int opt, int *val)
{
if (sock < 0) return -1;
#if defined(USE_SOCKLEN_T) || defined(_AIX43)
socklen_t optlen = sizeof(*val);
#elif defined(USE_SIZE_T)
size_t optlen = sizeof(*val);
#else
int optlen = sizeof(*val);
#endif
switch (opt) {
case kSendBuffer:
if (getsockopt(sock, SOL_SOCKET, SO_SNDBUF, (char*)val, &optlen) == -1) {
SysError("GetSockOpt", "getsockopt(SO_SNDBUF)");
return -1;
}
break;
case kRecvBuffer:
if (getsockopt(sock, SOL_SOCKET, SO_RCVBUF, (char*)val, &optlen) == -1) {
SysError("GetSockOpt", "getsockopt(SO_RCVBUF)");
return -1;
}
break;
case kOobInline:
if (getsockopt(sock, SOL_SOCKET, SO_OOBINLINE, (char*)val, &optlen) == -1) {
SysError("GetSockOpt", "getsockopt(SO_OOBINLINE)");
return -1;
}
break;
case kKeepAlive:
if (getsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, (char*)val, &optlen) == -1) {
SysError("GetSockOpt", "getsockopt(SO_KEEPALIVE)");
return -1;
}
break;
case kReuseAddr:
if (getsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char*)val, &optlen) == -1) {
SysError("GetSockOpt", "getsockopt(SO_REUSEADDR)");
return -1;
}
break;
case kNoDelay:
if (getsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char*)val, &optlen) == -1) {
SysError("GetSockOpt", "getsockopt(TCP_NODELAY)");
return -1;
}
break;
case kNoBlock:
int flg;
if ((flg = fcntl(sock, F_GETFL, 0)) == -1) {
SysError("GetSockOpt", "fcntl(F_GETFL)");
return -1;
}
*val = flg & O_NDELAY;
break;
case kProcessGroup:
#if !defined(R__LYNXOS) && !defined(R__WINGCC)
if (ioctl(sock, SIOCGPGRP, (char*)val) == -1) {
SysError("GetSockOpt", "ioctl(SIOCGPGRP)");
return -1;
}
#else
Error("GetSockOpt", "ioctl(SIOCGPGRP) not supported on LynxOS and cygwin/gcc");
return -1;
#endif
break;
case kAtMark:
#if !defined(R__LYNXOS)
if (ioctl(sock, SIOCATMARK, (char*)val) == -1) {
SysError("GetSockOpt", "ioctl(SIOCATMARK)");
return -1;
}
#else
Error("GetSockOpt", "ioctl(SIOCATMARK) not supported on LynxOS");
return -1;
#endif
break;
case kBytesToRead:
#if !defined(R__LYNXOS)
if (ioctl(sock, FIONREAD, (char*)val) == -1) {
SysError("GetSockOpt", "ioctl(FIONREAD)");
return -1;
}
#else
Error("GetSockOpt", "ioctl(FIONREAD) not supported on LynxOS");
return -1;
#endif
break;
default:
Error("GetSockOpt", "illegal option (%d)", opt);
*val = 0;
return -1;
}
return 0;
}
//////////////////////////////////////////////////////////////////////////
// //
// Static Protected Unix Interface functions. //
// //
//////////////////////////////////////////////////////////////////////////
//---- signals -----------------------------------------------------------------
static struct Signalmap_t {
int fCode;
SigHandler_t fHandler;
struct sigaction *fOldHandler;
const char *fSigName;
} gSignalMap[kMAXSIGNALS] = { // the order of the signals should be identical
{ SIGBUS, 0, 0, "bus error" }, // to the one in TSysEvtHandler.h
{ SIGSEGV, 0, 0, "segmentation violation" },
{ SIGSYS, 0, 0, "bad argument to system call" },
{ SIGPIPE, 0, 0, "write on a pipe with no one to read it" },
{ SIGILL, 0, 0, "illegal instruction" },
{ SIGQUIT, 0, 0, "quit" },
{ SIGINT, 0, 0, "interrupt" },
{ SIGWINCH, 0, 0, "window size change" },
{ SIGALRM, 0, 0, "alarm clock" },
{ SIGCHLD, 0, 0, "death of a child" },
{ SIGURG, 0, 0, "urgent data arrived on an I/O channel" },
{ SIGFPE, 0, 0, "floating point exception" },
{ SIGTERM, 0, 0, "termination signal" },
{ SIGUSR1, 0, 0, "user-defined signal 1" },
{ SIGUSR2, 0, 0, "user-defined signal 2" }
};
////////////////////////////////////////////////////////////////////////////////
/// Call the signal handler associated with the signal.
static void sighandler(int sig)
{
for (int i= 0; i < kMAXSIGNALS; i++) {
if (gSignalMap[i].fCode == sig) {
(*gSignalMap[i].fHandler)((ESignals)i);
return;
}
}
}
////////////////////////////////////////////////////////////////////////////////
/// Handle and dispatch signals.
void TUnixSystem::DispatchSignals(ESignals sig)
{
switch (sig) {
case kSigAlarm:
DispatchTimers(kFALSE);
break;
case kSigChild:
CheckChilds();
break;
case kSigBus:
case kSigSegmentationViolation:
case kSigIllegalInstruction:
case kSigFloatingException:
Break("TUnixSystem::DispatchSignals", "%s", UnixSigname(sig));
StackTrace();
if (gApplication)
//sig is ESignal, should it be mapped to the correct signal number?
gApplication->HandleException(sig);
else
//map to the real signal code + set the
//high order bit to indicate a signal (?)
Exit(gSignalMap[sig].fCode + 0x80);
break;
case kSigSystem:
case kSigPipe:
Break("TUnixSystem::DispatchSignals", "%s", UnixSigname(sig));
break;
case kSigWindowChanged:
Gl_windowchanged();
break;
case kSigUser2:
Break("TUnixSystem::DispatchSignals", "%s: printing stacktrace", UnixSigname(sig));
StackTrace();
// Intentional fall-through; pass the signal to handlers (or terminate):
default:
fSignals->Set(sig);
fSigcnt++;
break;
}
// check a-synchronous signals
if (fSigcnt > 0 && fSignalHandler->GetSize() > 0)
CheckSignals(kFALSE);
}
////////////////////////////////////////////////////////////////////////////////
/// Set a signal handler for a signal.
void TUnixSystem::UnixSignal(ESignals sig, SigHandler_t handler)
{
if (gEnv && !gEnv->GetValue("Root.ErrorHandlers", 1))
return;
if (gSignalMap[sig].fHandler != handler) {
struct sigaction sigact;
gSignalMap[sig].fHandler = handler;
gSignalMap[sig].fOldHandler = new struct sigaction();
#if defined(R__SUN)
sigact.sa_handler = (void (*)())sighandler;
#elif defined(R__SOLARIS)
sigact.sa_handler = sighandler;
#elif defined(R__LYNXOS)
# if (__GNUG__>=3)
sigact.sa_handler = sighandler;
# else
sigact.sa_handler = (void (*)(...))sighandler;
# endif
#else
sigact.sa_handler = sighandler;
#endif
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
#if defined(SA_RESTART)
sigact.sa_flags |= SA_RESTART;
#endif
if (sigaction(gSignalMap[sig].fCode, &sigact,
gSignalMap[sig].fOldHandler) < 0)
::SysError("TUnixSystem::UnixSignal", "sigaction");
}
}
////////////////////////////////////////////////////////////////////////////////
/// If ignore is true ignore the specified signal, else restore previous
/// behaviour.
void TUnixSystem::UnixIgnoreSignal(ESignals sig, Bool_t ignore)
{
TTHREAD_TLS(Bool_t) ignoreSig[kMAXSIGNALS] = { kFALSE };
TTHREAD_TLS_ARRAY(struct sigaction,kMAXSIGNALS,oldsigact);
if (ignore != ignoreSig[sig]) {
ignoreSig[sig] = ignore;
if (ignore) {
struct sigaction sigact;
#if defined(R__SUN)
sigact.sa_handler = (void (*)())SIG_IGN;
#elif defined(R__SOLARIS)
sigact.sa_handler = (void (*)(int))SIG_IGN;
#else
sigact.sa_handler = SIG_IGN;
#endif
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
if (sigaction(gSignalMap[sig].fCode, &sigact, &oldsigact[sig]) < 0)
::SysError("TUnixSystem::UnixIgnoreSignal", "sigaction");
} else {
if (sigaction(gSignalMap[sig].fCode, &oldsigact[sig], 0) < 0)
::SysError("TUnixSystem::UnixIgnoreSignal", "sigaction");
}
}
}
////////////////////////////////////////////////////////////////////////////////
/// When the argument is true the SIGALRM signal handler is set so that
/// interrupted syscalls will not be restarted by the kernel. This is
/// typically used in case one wants to put a timeout on an I/O operation.
/// By default interrupted syscalls will always be restarted (for all
/// signals). This can be controlled for each a-synchronous TTimer via
/// the method TTimer::SetInterruptSyscalls().
void TUnixSystem::UnixSigAlarmInterruptsSyscalls(Bool_t set)
{
if (gSignalMap[kSigAlarm].fHandler) {
struct sigaction sigact;
#if defined(R__SUN)
sigact.sa_handler = (void (*)())sighandler;
#elif defined(R__SOLARIS)
sigact.sa_handler = sighandler;
#elif defined(R__LYNXOS)
# if (__GNUG__>=3)
sigact.sa_handler = sighandler;
# else
sigact.sa_handler = (void (*)(...))sighandler;
# endif
#else
sigact.sa_handler = sighandler;
#endif
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
if (set) {
#if defined(SA_INTERRUPT) // SunOS
sigact.sa_flags |= SA_INTERRUPT;
#endif
} else {
#if defined(SA_RESTART)
sigact.sa_flags |= SA_RESTART;
#endif
}
if (sigaction(gSignalMap[kSigAlarm].fCode, &sigact, 0) < 0)
::SysError("TUnixSystem::UnixSigAlarmInterruptsSyscalls", "sigaction");
}
}
////////////////////////////////////////////////////////////////////////////////
/// Return the signal name associated with a signal.
const char *TUnixSystem::UnixSigname(ESignals sig)
{
return gSignalMap[sig].fSigName;
}
////////////////////////////////////////////////////////////////////////////////
/// Restore old signal handler for specified signal.
void TUnixSystem::UnixResetSignal(ESignals sig)
{
if (gSignalMap[sig].fOldHandler) {
// restore old signal handler
if (sigaction(gSignalMap[sig].fCode, gSignalMap[sig].fOldHandler, 0) < 0)
::SysError("TUnixSystem::UnixSignal", "sigaction");
delete gSignalMap[sig].fOldHandler;
gSignalMap[sig].fOldHandler = 0;
gSignalMap[sig].fHandler = 0;
}
}
////////////////////////////////////////////////////////////////////////////////
/// Restore old signal handlers.
void TUnixSystem::UnixResetSignals()
{
for (int sig = 0; sig < kMAXSIGNALS; sig++)
UnixResetSignal((ESignals)sig);
}
//---- time --------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Get current time in milliseconds since 0:00 Jan 1 1995.
Long64_t TUnixSystem::UnixNow()
{
static std::atomic<time_t> jan95{0};
if (!jan95) {
struct tm tp;
tp.tm_year = 95;
tp.tm_mon = 0;
tp.tm_mday = 1;
tp.tm_hour = 0;
tp.tm_min = 0;
tp.tm_sec = 0;
tp.tm_isdst = -1;
jan95 = mktime(&tp);
if ((int)jan95 == -1) {
::SysError("TUnixSystem::UnixNow", "error converting 950001 0:00 to time_t");
return 0;
}
}
struct timeval t;
gettimeofday(&t, 0);
return Long64_t(t.tv_sec-(Long_t)jan95)*1000 + t.tv_usec/1000;
}
////////////////////////////////////////////////////////////////////////////////
/// Set interval timer to time-out in ms milliseconds.
int TUnixSystem::UnixSetitimer(Long_t ms)
{
struct itimerval itv;
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 0;
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 0;
if (ms > 0) {
itv.it_value.tv_sec = time_t(ms / 1000);
itv.it_value.tv_usec = time_t((ms % 1000) * 1000);
}
int st = setitimer(ITIMER_REAL, &itv, 0);
if (st == -1)
::SysError("TUnixSystem::UnixSetitimer", "setitimer");
return st;
}
//---- file descriptors --------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Wait for events on the file descriptors specified in the readready and
/// writeready masks or for timeout (in milliseconds) to occur. Returns
/// the number of ready descriptors, or 0 in case of timeout, or < 0 in
/// case of an error, with -2 being EINTR and -3 EBADF. In case of EINTR
/// the errno has been reset and the method can be called again.
int TUnixSystem::UnixSelect(Int_t nfds, TFdSet *readready, TFdSet *writeready,
Long_t timeout)
{
int retcode;
fd_set *rd = (readready) ? (fd_set*)readready->GetBits() : 0;
fd_set *wr = (writeready) ? (fd_set*)writeready->GetBits() : 0;
if (timeout >= 0) {
struct timeval tv;
tv.tv_sec = Int_t(timeout / 1000);
tv.tv_usec = (timeout % 1000) * 1000;
retcode = select(nfds, rd, wr, 0, &tv);
} else {
retcode = select(nfds, rd, wr, 0, 0);
}
if (retcode == -1) {
if (GetErrno() == EINTR) {
ResetErrno(); // errno is not self reseting
return -2;
}
if (GetErrno() == EBADF)
return -3;
return -1;
}
return retcode;
}
//---- directories -------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Returns the user's home directory.
const char *TUnixSystem::UnixHomedirectory(const char *name)
{
static char path[kMAXPATHLEN], mydir[kMAXPATHLEN] = { '\0' };
return UnixHomedirectory(name, path, mydir);
}
////////////////////////////////////////////////////////////////////////////
/// Returns the user's home directory.
const char *TUnixSystem::UnixHomedirectory(const char *name, char *path, char *mydir)
{
struct passwd *pw;
if (name) {
pw = getpwnam(name);
if (pw) {
strncpy(path, pw->pw_dir, kMAXPATHLEN-1);
path[kMAXPATHLEN-1] = '\0';
return path;
}
} else {
if (mydir[0])
return mydir;
pw = getpwuid(getuid());
if (pw && pw->pw_dir) {
strncpy(mydir, pw->pw_dir, kMAXPATHLEN-1);
mydir[kMAXPATHLEN-1] = '\0';
return mydir;
} else if (gSystem->Getenv("HOME")) {
strncpy(mydir, gSystem->Getenv("HOME"), kMAXPATHLEN-1);
mydir[kMAXPATHLEN-1] = '\0';
return mydir;
}
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Make a Unix file system directory. Returns 0 in case of success and
/// -1 if the directory could not be created (either already exists or
/// illegal path name).
int TUnixSystem::UnixMakedir(const char *dir)
{
return ::mkdir(StripOffProto(dir, "file:"), 0755);
}
////////////////////////////////////////////////////////////////////////////////
/// Open a directory.
void *TUnixSystem::UnixOpendir(const char *dir)
{
struct stat finfo;
const char *edir = StripOffProto(dir, "file:");
if (stat(edir, &finfo) < 0)
return 0;
if (!S_ISDIR(finfo.st_mode))
return 0;
return (void*) opendir(edir);
}
#if defined(_POSIX_SOURCE)
// Posix does not require that the d_ino field be present, and some
// systems do not provide it.
# define REAL_DIR_ENTRY(dp) 1
#else
# define REAL_DIR_ENTRY(dp) (dp->d_ino != 0)
#endif
////////////////////////////////////////////////////////////////////////////////
/// Returns the next directory entry.
const char *TUnixSystem::UnixGetdirentry(void *dirp1)
{
DIR *dirp = (DIR*)dirp1;
#ifdef HAS_DIRENT
struct dirent *dp;
#else
struct direct *dp;
#endif
if (dirp) {
for (;;) {
dp = readdir(dirp);
if (dp == 0)
return 0;
if (REAL_DIR_ENTRY(dp))
return dp->d_name;
}
}
return 0;
}
//---- files -------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Get info about a file. Info is returned in the form of a FileStat_t
/// structure (see TSystem.h).
/// The function returns 0 in case of success and 1 if the file could
/// not be stat'ed.
int TUnixSystem::UnixFilestat(const char *fpath, FileStat_t &buf)
{
const char *path = StripOffProto(fpath, "file:");
buf.fIsLink = kFALSE;
#if defined(R__SEEK64)
struct stat64 sbuf;
if (path && lstat64(path, &sbuf) == 0) {
#else
struct stat sbuf;
if (path && lstat(path, &sbuf) == 0) {
#endif
buf.fIsLink = S_ISLNK(sbuf.st_mode);
if (buf.fIsLink) {
#if defined(R__SEEK64)
if (stat64(path, &sbuf) == -1) {
#else
if (stat(path, &sbuf) == -1) {
#endif
return 1;
}
}
buf.fDev = sbuf.st_dev;
buf.fIno = sbuf.st_ino;
buf.fMode = sbuf.st_mode;
buf.fUid = sbuf.st_uid;
buf.fGid = sbuf.st_gid;
buf.fSize = sbuf.st_size;
buf.fMtime = sbuf.st_mtime;
return 0;
}
return 1;
}
////////////////////////////////////////////////////////////////////////////////
/// Get info about a file system: id, bsize, bfree, blocks.
/// Id is file system type (machine dependend, see statfs())
/// Bsize is block size of file system
/// Blocks is total number of blocks in file system
/// Bfree is number of free blocks in file system
/// The function returns 0 in case of success and 1 if the file system could
/// not be stat'ed.
int TUnixSystem::UnixFSstat(const char *path, Long_t *id, Long_t *bsize,
Long_t *blocks, Long_t *bfree)
{
struct statfs statfsbuf;
#if (defined(R__SOLARIS) && !defined(R__LINUX))
if (statfs(path, &statfsbuf, sizeof(struct statfs), 0) == 0) {
*id = statfsbuf.f_fstyp;
*bsize = statfsbuf.f_bsize;
*blocks = statfsbuf.f_blocks;
*bfree = statfsbuf.f_bfree;
#else
if (statfs((char*)path, &statfsbuf) == 0) {
#ifdef R__OBSD
// Convert BSD filesystem names to Linux filesystem type numbers
// where possible. Linux statfs uses a value of -1 to indicate
// an unsupported field.
if (!strcmp(statfsbuf.f_fstypename, MOUNT_FFS) ||
!strcmp(statfsbuf.f_fstypename, MOUNT_MFS))
*id = 0x11954;
else if (!strcmp(statfsbuf.f_fstypename, MOUNT_NFS))
*id = 0x6969;
else if (!strcmp(statfsbuf.f_fstypename, MOUNT_MSDOS))
*id = 0x4d44;
else if (!strcmp(statfsbuf.f_fstypename, MOUNT_EXT2FS))
*id = 0xef53;
else if (!strcmp(statfsbuf.f_fstypename, MOUNT_CD9660))
*id = 0x9660;
else if (!strcmp(statfsbuf.f_fstypename, MOUNT_NCPFS))
*id = 0x6969;
else
*id = -1;
#else
*id = statfsbuf.f_type;
#endif
*bsize = statfsbuf.f_bsize;
*blocks = statfsbuf.f_blocks;
*bfree = statfsbuf.f_bavail;
#endif
return 0;
}
return 1;
}
////////////////////////////////////////////////////////////////////////////////
/// Wait till child is finished.
int TUnixSystem::UnixWaitchild()
{
int status;
return (int) waitpid(0, &status, WNOHANG);
}
//---- RPC -------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Open a TCP/IP connection to server and connect to a service (i.e. port).
/// Use tcpwindowsize to specify the size of the receive buffer, it has
/// to be specified here to make sure the window scale option is set (for
/// tcpwindowsize > 65KB and for platforms supporting window scaling).
/// Is called via the TSocket constructor. Returns -1 in case of error.
int TUnixSystem::UnixTcpConnect(const char *hostname, int port,
int tcpwindowsize)
{
short sport;
struct servent *sp;
if ((sp = getservbyport(htons(port), kProtocolName)))
sport = sp->s_port;
else
sport = htons(port);
TInetAddress addr = gSystem->GetHostByName(hostname);
if (!addr.IsValid()) return -1;
UInt_t adr = htonl(addr.GetAddress());
struct sockaddr_in server;
memset(&server, 0, sizeof(server));
memcpy(&server.sin_addr, &adr, sizeof(adr));
server.sin_family = addr.GetFamily();
server.sin_port = sport;
// Create socket
int sock;
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
::SysError("TUnixSystem::UnixTcpConnect", "socket (%s:%d)",
hostname, port);
return -1;
}
if (tcpwindowsize > 0) {
gSystem->SetSockOpt(sock, kRecvBuffer, tcpwindowsize);
gSystem->SetSockOpt(sock, kSendBuffer, tcpwindowsize);
}
while (connect(sock, (struct sockaddr*) &server, sizeof(server)) == -1) {
if (GetErrno() == EINTR)
ResetErrno();
else {
::SysError("TUnixSystem::UnixTcpConnect", "connect (%s:%d)",
hostname, port);
close(sock);
return -1;
}
}
return sock;
}
////////////////////////////////////////////////////////////////////////////////
/// Creates a UDP socket connection
/// Is called via the TSocket constructor. Returns -1 in case of error.
int TUnixSystem::UnixUdpConnect(const char *hostname, int port)
{
short sport;
struct servent *sp;
if ((sp = getservbyport(htons(port), kProtocolName)))
sport = sp->s_port;
else
sport = htons(port);
TInetAddress addr = gSystem->GetHostByName(hostname);
if (!addr.IsValid()) return -1;
UInt_t adr = htonl(addr.GetAddress());
struct sockaddr_in server;
memset(&server, 0, sizeof(server));
memcpy(&server.sin_addr, &adr, sizeof(adr));
server.sin_family = addr.GetFamily();
server.sin_port = sport;
// Create socket
int sock;
if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
::SysError("TUnixSystem::UnixUdpConnect", "socket (%s:%d)",
hostname, port);
return -1;
}
while (connect(sock, (struct sockaddr*) &server, sizeof(server)) == -1) {
if (GetErrno() == EINTR)
ResetErrno();
else {
::SysError("TUnixSystem::UnixUdpConnect", "connect (%s:%d)",
hostname, port);
close(sock);
return -1;
}
}
return sock;
}
////////////////////////////////////////////////////////////////////////////////
/// Connect to a Unix domain socket.
int TUnixSystem::UnixUnixConnect(int port)
{
return UnixUnixConnect(TString::Format("%s/%d", kServerPath, port));
}
////////////////////////////////////////////////////////////////////////////////
/// Connect to a Unix domain socket. Returns -1 in case of error.
int TUnixSystem::UnixUnixConnect(const char *sockpath)
{
if (!sockpath || strlen(sockpath) <= 0) {
::SysError("TUnixSystem::UnixUnixConnect", "socket path undefined");
return -1;
}
int sock;
struct sockaddr_un unserver;
unserver.sun_family = AF_UNIX;
if (strlen(sockpath) > sizeof(unserver.sun_path)-1) {
::Error("TUnixSystem::UnixUnixConnect", "socket path %s, longer than max allowed length (%u)",
sockpath, (UInt_t)sizeof(unserver.sun_path)-1);
return -1;
}
strcpy(unserver.sun_path, sockpath);
// Open socket
if ((sock = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {
::SysError("TUnixSystem::UnixUnixConnect", "socket");
return -1;
}
while (connect(sock, (struct sockaddr*) &unserver, strlen(unserver.sun_path)+2) == -1) {
if (GetErrno() == EINTR)
ResetErrno();
else {
::SysError("TUnixSystem::UnixUnixConnect", "connect");
close(sock);
return -1;
}
}
return sock;
}
////////////////////////////////////////////////////////////////////////////////
/// Open a socket, bind to it and start listening for TCP/IP connections
/// on the port. If reuse is true reuse the address, backlog specifies
/// how many sockets can be waiting to be accepted. If port is 0 a port
/// scan will be done to find a free port. This option is mutual exlusive
/// with the reuse option.
/// Use tcpwindowsize to specify the size of the receive buffer, it has
/// to be specified here to make sure the window scale option is set (for
/// tcpwindowsize > 65KB and for platforms supporting window scaling).
/// Returns socket fd or -1 if socket() failed, -2 if bind() failed
/// or -3 if listen() failed.
int TUnixSystem::UnixTcpService(int port, Bool_t reuse, int backlog,
int tcpwindowsize)
{
const short kSOCKET_MINPORT = 5000, kSOCKET_MAXPORT = 15000;
short sport, tryport = kSOCKET_MINPORT;
struct servent *sp;
if (port == 0 && reuse) {
::Error("TUnixSystem::UnixTcpService", "cannot do a port scan while reuse is true");
return -1;
}
if ((sp = getservbyport(htons(port), kProtocolName)))
sport = sp->s_port;
else
sport = htons(port);
// Create tcp socket
int sock;
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
::SysError("TUnixSystem::UnixTcpService", "socket");
return -1;
}
if (reuse)
gSystem->SetSockOpt(sock, kReuseAddr, 1);
if (tcpwindowsize > 0) {
gSystem->SetSockOpt(sock, kRecvBuffer, tcpwindowsize);
gSystem->SetSockOpt(sock, kSendBuffer, tcpwindowsize);
}
struct sockaddr_in inserver;
memset(&inserver, 0, sizeof(inserver));
inserver.sin_family = AF_INET;
inserver.sin_addr.s_addr = htonl(INADDR_ANY);
inserver.sin_port = sport;
// Bind socket
if (port > 0) {
if (::bind(sock, (struct sockaddr*) &inserver, sizeof(inserver))) {
::SysError("TUnixSystem::UnixTcpService", "bind");
close(sock);
return -2;
}
} else {
int bret;
do {
inserver.sin_port = htons(tryport);
bret = ::bind(sock, (struct sockaddr*) &inserver, sizeof(inserver));
tryport++;
} while (bret < 0 && GetErrno() == EADDRINUSE && tryport < kSOCKET_MAXPORT);
if (bret < 0) {
::SysError("TUnixSystem::UnixTcpService", "bind (port scan)");
close(sock);
return -2;
}
}
// Start accepting connections
if (::listen(sock, backlog)) {
::SysError("TUnixSystem::UnixTcpService", "listen");
close(sock);
return -3;
}
return sock;
}
////////////////////////////////////////////////////////////////////////////////
/// Open a socket, bind to it and start listening for UDP connections
/// on the port. If reuse is true reuse the address, backlog specifies
/// how many sockets can be waiting to be accepted. If port is 0 a port
/// scan will be done to find a free port. This option is mutual exlusive
/// with the reuse option.
int TUnixSystem::UnixUdpService(int port, int backlog)
{
const short kSOCKET_MINPORT = 5000, kSOCKET_MAXPORT = 15000;
short sport, tryport = kSOCKET_MINPORT;
struct servent *sp;
if ((sp = getservbyport(htons(port), kProtocolName)))
sport = sp->s_port;
else
sport = htons(port);
// Create udp socket
int sock;
if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
::SysError("TUnixSystem::UnixUdpService", "socket");
return -1;
}
struct sockaddr_in inserver;
memset(&inserver, 0, sizeof(inserver));
inserver.sin_family = AF_INET;
inserver.sin_addr.s_addr = htonl(INADDR_ANY);
inserver.sin_port = sport;
// Bind socket
if (port > 0) {
if (::bind(sock, (struct sockaddr*) &inserver, sizeof(inserver))) {
::SysError("TUnixSystem::UnixUdpService", "bind");
close(sock);
return -2;
}
} else {
int bret;
do {
inserver.sin_port = htons(tryport);
bret = ::bind(sock, (struct sockaddr*) &inserver, sizeof(inserver));
tryport++;
} while (bret < 0 && GetErrno() == EADDRINUSE && tryport < kSOCKET_MAXPORT);
if (bret < 0) {
::SysError("TUnixSystem::UnixUdpService", "bind (port scan)");
close(sock);
return -2;
}
}
// Start accepting connections
if (::listen(sock, backlog)) {
::SysError("TUnixSystem::UnixUdpService", "listen");
close(sock);
return -3;
}
return sock;
}
////////////////////////////////////////////////////////////////////////////////
/// Open a socket, bind to it and start listening for Unix domain connections
/// to it. Returns socket fd or -1.
int TUnixSystem::UnixUnixService(int port, int backlog)
{
int oldumask;
// Assure that socket directory exists
oldumask = umask(0);
int res = ::mkdir(kServerPath, 0777);
umask(oldumask);
if (res == -1)
return -1;
// Socket path
TString sockpath;
sockpath.Form("%s/%d", kServerPath, port);
// Remove old socket
unlink(sockpath.Data());
return UnixUnixService(sockpath, backlog);
}
////////////////////////////////////////////////////////////////////////////////
/// Open a socket on path 'sockpath', bind to it and start listening for Unix
/// domain connections to it. Returns socket fd or -1.
int TUnixSystem::UnixUnixService(const char *sockpath, int backlog)
{
if (!sockpath || strlen(sockpath) <= 0) {
::SysError("TUnixSystem::UnixUnixService", "socket path undefined");
return -1;
}
struct sockaddr_un unserver;
int sock;
// Prepare structure
memset(&unserver, 0, sizeof(unserver));
unserver.sun_family = AF_UNIX;
if (strlen(sockpath) > sizeof(unserver.sun_path)-1) {
::Error("TUnixSystem::UnixUnixService", "socket path %s, longer than max allowed length (%u)",
sockpath, (UInt_t)sizeof(unserver.sun_path)-1);
return -1;
}
strcpy(unserver.sun_path, sockpath);
// Create socket
if ((sock = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {
::SysError("TUnixSystem::UnixUnixService", "socket");
return -1;
}
if (::bind(sock, (struct sockaddr*) &unserver, strlen(unserver.sun_path)+2)) {
::SysError("TUnixSystem::UnixUnixService", "bind");
close(sock);
return -1;
}
// Start accepting connections
if (::listen(sock, backlog)) {
::SysError("TUnixSystem::UnixUnixService", "listen");
close(sock);
return -1;
}
return sock;
}
////////////////////////////////////////////////////////////////////////////////
/// Receive exactly length bytes into buffer. Returns number of bytes
/// received. Returns -1 in case of error, -2 in case of MSG_OOB
/// and errno == EWOULDBLOCK, -3 in case of MSG_OOB and errno == EINVAL
/// and -4 in case of kNoBlock and errno == EWOULDBLOCK.
/// Returns -5 if pipe broken or reset by peer (EPIPE || ECONNRESET).
int TUnixSystem::UnixRecv(int sock, void *buffer, int length, int flag)
{
ResetErrno();
if (sock < 0) return -1;
int once = 0;
if (flag == -1) {
flag = 0;
once = 1;
}
if (flag == MSG_PEEK)
once = 1;
int n, nrecv = 0;
char *buf = (char *)buffer;
for (n = 0; n < length; n += nrecv) {
if ((nrecv = recv(sock, buf+n, length-n, flag)) <= 0) {
if (nrecv == 0)
break; // EOF
if (flag == MSG_OOB) {
if (GetErrno() == EWOULDBLOCK)
return -2;
else if (GetErrno() == EINVAL)
return -3;
}
if (GetErrno() == EWOULDBLOCK)
return -4;
else {
if (GetErrno() != EINTR)
::SysError("TUnixSystem::UnixRecv", "recv");
if (GetErrno() == EPIPE || GetErrno() == ECONNRESET)
return -5;
else
return -1;
}
}
if (once)
return nrecv;
}
return n;
}
////////////////////////////////////////////////////////////////////////////////
/// Send exactly length bytes from buffer. Returns -1 in case of error,
/// otherwise number of sent bytes. Returns -4 in case of kNoBlock and
/// errno == EWOULDBLOCK. Returns -5 if pipe broken or reset by peer
/// (EPIPE || ECONNRESET).
int TUnixSystem::UnixSend(int sock, const void *buffer, int length, int flag)
{
if (sock < 0) return -1;
int once = 0;
if (flag == -1) {
flag = 0;
once = 1;
}
int n, nsent = 0;
const char *buf = (const char *)buffer;
for (n = 0; n < length; n += nsent) {
if ((nsent = send(sock, buf+n, length-n, flag)) <= 0) {
if (nsent == 0)
break;
if (GetErrno() == EWOULDBLOCK)
return -4;
else {
if (GetErrno() != EINTR)
::SysError("TUnixSystem::UnixSend", "send");
if (GetErrno() == EPIPE || GetErrno() == ECONNRESET)
return -5;
else
return -1;
}
}
if (once)
return nsent;
}
return n;
}
//---- Dynamic Loading ---------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// Get shared library search path. Static utility function.
static const char *DynamicPath(const char *newpath = 0, Bool_t reset = kFALSE)
{
static TString dynpath;
static Bool_t initialized = kFALSE;
if (!initialized) {
// force one time initialization of gROOT before we start
// (otherwise it might be done as a side effect of gEnv->GetValue and
// TROOT's initialization will call this routine).
gROOT;
}
if (newpath) {
dynpath = newpath;
} else if (reset || !initialized) {
initialized = kTRUE;
TString rdynpath = gEnv->GetValue("Root.DynamicPath", (char*)0);
rdynpath.ReplaceAll(": ", ":"); // in case DynamicPath was extended
if (rdynpath.IsNull()) {
rdynpath = ".:"; rdynpath += TROOT::GetLibDir();
}
TString ldpath;
#if defined (R__AIX)
ldpath = gSystem->Getenv("LIBPATH");
#elif defined(R__MACOSX)
ldpath = gSystem->Getenv("DYLD_LIBRARY_PATH");
if (!ldpath.IsNull())
ldpath += ":";
ldpath += gSystem->Getenv("LD_LIBRARY_PATH");
if (!ldpath.IsNull())
ldpath += ":";
ldpath += gSystem->Getenv("DYLD_FALLBACK_LIBRARY_PATH");
#else
ldpath = gSystem->Getenv("LD_LIBRARY_PATH");
#endif
if (ldpath.IsNull())
dynpath = rdynpath;
else {
dynpath = ldpath; dynpath += ":"; dynpath += rdynpath;
}
if (!dynpath.Contains(TROOT::GetLibDir())) {
dynpath += ":"; dynpath += TROOT::GetLibDir();
}
if (gCling) {
dynpath += ":"; dynpath += gCling->GetSTLIncludePath();
} else
initialized = kFALSE;
#if defined(R__WINGCC) || defined(R__MACOSX)
if (!dynpath.EndsWith(":")) dynpath += ":";
dynpath += "/usr/local/lib:/usr/X11R6/lib:/usr/lib:/lib:";
dynpath += "/lib/x86_64-linux-gnu:/usr/local/lib64:/usr/lib64:/lib64:";
#else
// trick to get the system search path
std::string cmd("LD_DEBUG=libs LD_PRELOAD=DOESNOTEXIST ls 2>&1");
FILE *pf = popen(cmd.c_str (), "r");
std::string result = "";
char buffer[128];
while (!feof(pf)) {
if (fgets(buffer, 128, pf) != NULL)
result += buffer;
}
pclose(pf);
std::size_t from = result.find("search path=", result.find("(LD_LIBRARY_PATH)"));
std::size_t to = result.find("(system search path)");
if (from != std::string::npos && to != std::string::npos) {
from += 12;
std::string sys_path = result.substr(from, to-from);
sys_path.erase(std::remove_if(sys_path.begin(), sys_path.end(), isspace), sys_path.end());
if (!dynpath.EndsWith(":")) dynpath += ":";
dynpath += sys_path.c_str();
}
dynpath.ReplaceAll("::", ":");
#endif
if (gDebug > 0) std::cout << "dynpath = " << dynpath.Data() << std::endl;
}
return dynpath;
}
////////////////////////////////////////////////////////////////////////////////
/// Add a new directory to the dynamic path.
void TUnixSystem::AddDynamicPath(const char *path)
{
if (path) {
TString oldpath = DynamicPath(0, kFALSE);
oldpath.Append(":");
oldpath.Append(path);
DynamicPath(oldpath);
}
}
////////////////////////////////////////////////////////////////////////////////
/// Return the dynamic path (used to find shared libraries).
const char *TUnixSystem::GetDynamicPath()
{
return DynamicPath(0, kFALSE);
}
////////////////////////////////////////////////////////////////////////////////
/// Set the dynamic path to a new value.
/// If the value of 'path' is zero, the dynamic path is reset to its
/// default value.
void TUnixSystem::SetDynamicPath(const char *path)
{
if (!path)
DynamicPath(0, kTRUE);
else
DynamicPath(path);
}
////////////////////////////////////////////////////////////////////////////////
/// Returns the path of a shared library (searches for library in the
/// shared library search path). If no file name extension is provided
/// it first tries .so, .sl, .dl and then .a (for AIX).
const char *TUnixSystem::FindDynamicLibrary(TString& sLib, Bool_t quiet)
{
char buf[PATH_MAX + 1];
char *res = realpath(sLib.Data(), buf);
if (res) sLib = buf;
TString searchFor = sLib;
if (gSystem->FindFile(GetDynamicPath(), sLib, kReadPermission)) {
return sLib;
}
sLib = searchFor;
const char* lib = sLib.Data();
int len = sLib.Length();
if (len > 3 && (!strcmp(lib+len-3, ".so") ||
!strcmp(lib+len-3, ".dl") ||
!strcmp(lib+len-4, ".dll") ||
!strcmp(lib+len-4, ".DLL") ||
!strcmp(lib+len-6, ".dylib") ||
!strcmp(lib+len-3, ".sl") ||
!strcmp(lib+len-2, ".a"))) {
if (gSystem->FindFile(GetDynamicPath(), sLib, kReadPermission)) {
return sLib;
}
if (!quiet)
Error("FindDynamicLibrary",
"%s does not exist in %s", searchFor.Data(), GetDynamicPath());
return 0;
}
static const char* exts[] = {
".so", ".dll", ".dylib", ".sl", ".dl", ".a", 0 };
const char** ext = exts;
while (*ext) {
TString fname(sLib);
fname += *ext;
++ext;
if (gSystem->FindFile(GetDynamicPath(), fname, kReadPermission)) {
sLib.Swap(fname);
return sLib;
}
}
if (!quiet)
Error("FindDynamicLibrary",
"%s[.so | .dll | .dylib | .sl | .dl | .a] does not exist in %s",
searchFor.Data(), GetDynamicPath());
return 0;
}
//---- System, CPU and Memory info ---------------------------------------------
#if defined(R__MACOSX)
#include <sys/resource.h>
#include <mach/mach.h>
#include <mach/mach_error.h>
////////////////////////////////////////////////////////////////////////////////
/// Get system info for Mac OS X.
static void GetDarwinSysInfo(SysInfo_t *sysinfo)
{
FILE *p = gSystem->OpenPipe("sysctl -n kern.ostype hw.model hw.ncpu hw.cpufrequency "
"hw.busfrequency hw.l2cachesize hw.memsize", "r");
TString s;
s.Gets(p);
sysinfo->fOS = s;
s.Gets(p);
sysinfo->fModel = s;
s.Gets(p);
sysinfo->fCpus = s.Atoi();
s.Gets(p);
Long64_t t = s.Atoll();
sysinfo->fCpuSpeed = Int_t(t / 1000000);
s.Gets(p);
t = s.Atoll();
sysinfo->fBusSpeed = Int_t(t / 1000000);
s.Gets(p);
sysinfo->fL2Cache = s.Atoi() / 1024;
s.Gets(p);
t = s.Atoll();
sysinfo->fPhysRam = Int_t(t / 1024 / 1024);
gSystem->ClosePipe(p);
p = gSystem->OpenPipe("hostinfo", "r");
while (s.Gets(p)) {
if (s.BeginsWith("Processor type: ")) {
TPRegexp("Processor type: ([^ ]+).*").Substitute(s, "$1");
sysinfo->fCpuType = s;
}
}
gSystem->ClosePipe(p);
}
////////////////////////////////////////////////////////////////////////////////
/// Get CPU load on Mac OS X.
static void ReadDarwinCpu(long *ticks)
{
mach_msg_type_number_t count;
kern_return_t kr;
host_cpu_load_info_data_t cpu;
ticks[0] = ticks[1] = ticks[2] = ticks[3] = 0;
count = HOST_CPU_LOAD_INFO_COUNT;
kr = host_statistics(mach_host_self(), HOST_CPU_LOAD_INFO, (host_info_t)&cpu, &count);
if (kr != KERN_SUCCESS) {
::Error("TUnixSystem::ReadDarwinCpu", "host_statistics: %s", mach_error_string(kr));
} else {
ticks[0] = cpu.cpu_ticks[CPU_STATE_USER];
ticks[1] = cpu.cpu_ticks[CPU_STATE_SYSTEM];
ticks[2] = cpu.cpu_ticks[CPU_STATE_IDLE];
ticks[3] = cpu.cpu_ticks[CPU_STATE_NICE];
}
}
////////////////////////////////////////////////////////////////////////////////
/// Get CPU stat for Mac OS X. Use sampleTime to set the interval over which
/// the CPU load will be measured, in ms (default 1000).
static void GetDarwinCpuInfo(CpuInfo_t *cpuinfo, Int_t sampleTime)
{
Double_t avg[3];
if (getloadavg(avg, sizeof(avg)) < 0) {
::Error("TUnixSystem::GetDarwinCpuInfo", "getloadavg failed");
} else {
cpuinfo->fLoad1m = (Float_t)avg[0];
cpuinfo->fLoad5m = (Float_t)avg[1];
cpuinfo->fLoad15m = (Float_t)avg[2];
}
Long_t cpu_ticks1[4], cpu_ticks2[4];
ReadDarwinCpu(cpu_ticks1);
gSystem->Sleep(sampleTime);
ReadDarwinCpu(cpu_ticks2);
Long_t userticks = (cpu_ticks2[0] + cpu_ticks2[3]) -
(cpu_ticks1[0] + cpu_ticks1[3]);
Long_t systicks = cpu_ticks2[1] - cpu_ticks1[1];
Long_t idleticks = cpu_ticks2[2] - cpu_ticks1[2];
if (userticks < 0) userticks = 0;
if (systicks < 0) systicks = 0;
if (idleticks < 0) idleticks = 0;
Long_t totalticks = userticks + systicks + idleticks;
if (totalticks) {
cpuinfo->fUser = ((Float_t)(100 * userticks)) / ((Float_t)totalticks);
cpuinfo->fSys = ((Float_t)(100 * systicks)) / ((Float_t)totalticks);
cpuinfo->fTotal = cpuinfo->fUser + cpuinfo->fSys;
cpuinfo->fIdle = ((Float_t)(100 * idleticks)) / ((Float_t)totalticks);
}
}
////////////////////////////////////////////////////////////////////////////////
/// Get VM stat for Mac OS X.
static void GetDarwinMemInfo(MemInfo_t *meminfo)
{
static Int_t pshift = 0;
static DIR *dirp;
vm_statistics_data_t vm_info;
mach_msg_type_number_t count;
kern_return_t kr;
struct dirent *dp;
Long64_t total, used, free, swap_total, swap_used;
count = HOST_VM_INFO_COUNT;
kr = host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&vm_info, &count);
if (kr != KERN_SUCCESS) {
::Error("TUnixSystem::GetDarwinMemInfo", "host_statistics: %s", mach_error_string(kr));
return;
}
if (pshift == 0) {
for (int psize = getpagesize(); psize > 1; psize >>= 1)
pshift++;
}
used = (Long64_t)(vm_info.active_count + vm_info.inactive_count + vm_info.wire_count) << pshift;
free = (Long64_t)(vm_info.free_count) << pshift;
total = (Long64_t)(vm_info.active_count + vm_info.inactive_count + vm_info.free_count + vm_info.wire_count) << pshift;
// Swap is available at same time as mem, so grab values here.
swap_used = vm_info.pageouts << pshift;
// Figure out total swap. This adds up the size of the swapfiles */
dirp = opendir("/private/var/vm");
if (!dirp)
return;
swap_total = 0;
while ((dp = readdir(dirp)) != 0) {
struct stat sb;
char fname [MAXNAMLEN];
if (strncmp(dp->d_name, "swapfile", 8))
continue;
strlcpy(fname, "/private/var/vm/",MAXNAMLEN);
strlcat (fname, dp->d_name,MAXNAMLEN);
if (stat(fname, &sb) < 0)
continue;
swap_total += sb.st_size;
}
closedir(dirp);
meminfo->fMemTotal = (Int_t) (total >> 20); // divide by 1024 * 1024
meminfo->fMemUsed = (Int_t) (used >> 20);
meminfo->fMemFree = (Int_t) (free >> 20);
meminfo->fSwapTotal = (Int_t) (swap_total >> 20);
meminfo->fSwapUsed = (Int_t) (swap_used >> 20);
meminfo->fSwapFree = meminfo->fSwapTotal - meminfo->fSwapUsed;
}
////////////////////////////////////////////////////////////////////////////////
/// Get process info for this process on Mac OS X.
/// Code largely taken from:
/// http://www.opensource.apple.com/source/top/top-15/libtop.c
/// The virtual memory usage is slightly over estimated as we don't
/// subtract shared regions, but the value makes more sense
/// then pure vsize, which is useless on 64-bit machines.
static void GetDarwinProcInfo(ProcInfo_t *procinfo)
{
#ifdef _LP64
#define vm_region vm_region_64
#endif
// taken from <mach/shared_memory_server.h> which is obsoleted in 10.5
#define GLOBAL_SHARED_TEXT_SEGMENT 0x90000000U
#define GLOBAL_SHARED_DATA_SEGMENT 0xA0000000U
#define SHARED_TEXT_REGION_SIZE 0x10000000
#define SHARED_DATA_REGION_SIZE 0x10000000
struct rusage ru;
if (getrusage(RUSAGE_SELF, &ru) < 0) {
::SysError("TUnixSystem::GetDarwinProcInfo", "getrusage failed");
} else {
procinfo->fCpuUser = (Float_t)(ru.ru_utime.tv_sec) +
((Float_t)(ru.ru_utime.tv_usec) / 1000000.);
procinfo->fCpuSys = (Float_t)(ru.ru_stime.tv_sec) +
((Float_t)(ru.ru_stime.tv_usec) / 1000000.);
}
task_basic_info_data_t ti;
mach_msg_type_number_t count;
kern_return_t kr;
task_t a_task = mach_task_self();
count = TASK_BASIC_INFO_COUNT;
kr = task_info(a_task, TASK_BASIC_INFO, (task_info_t)&ti, &count);
if (kr != KERN_SUCCESS) {
::Error("TUnixSystem::GetDarwinProcInfo", "task_info: %s", mach_error_string(kr));
} else {
// resident size does not require any calculation. Virtual size
// needs to be adjusted if traversing memory objects do not include the
// globally shared text and data regions
mach_port_t object_name;
vm_address_t address;
vm_region_top_info_data_t info;
vm_size_t vsize, vprvt, rsize, size;
rsize = ti.resident_size;
vsize = ti.virtual_size;
vprvt = 0;
for (address = 0; ; address += size) {
// get memory region
count = VM_REGION_TOP_INFO_COUNT;
if (vm_region(a_task, &address, &size,
VM_REGION_TOP_INFO, (vm_region_info_t)&info, &count,
&object_name) != KERN_SUCCESS) {
// no more memory regions.
break;
}
if (address >= GLOBAL_SHARED_TEXT_SEGMENT &&
address < (GLOBAL_SHARED_DATA_SEGMENT + SHARED_DATA_REGION_SIZE)) {
// This region is private shared.
// Check if this process has the globally shared
// text and data regions mapped in. If so, adjust
// virtual memory size and exit loop.
if (info.share_mode == SM_EMPTY) {
vm_region_basic_info_data_64_t b_info;
count = VM_REGION_BASIC_INFO_COUNT_64;
if (vm_region_64(a_task, &address,
&size, VM_REGION_BASIC_INFO,
(vm_region_info_t)&b_info, &count,
&object_name) != KERN_SUCCESS) {
break;
}
if (b_info.reserved) {
vsize -= (SHARED_TEXT_REGION_SIZE + SHARED_DATA_REGION_SIZE);
//break; // only for vsize
}
}
// Short circuit the loop if this isn't a shared
// private region, since that's the only region
// type we care about within the current address range.
if (info.share_mode != SM_PRIVATE) {
continue;
}
}
switch (info.share_mode) {
case SM_COW: {
if (info.ref_count == 1) {
vprvt += size;
} else {
vprvt += info.private_pages_resident * getpagesize();
}
break;
}
case SM_PRIVATE: {
vprvt += size;
break;
}
default:
break;
}
}
procinfo->fMemResident = (Long_t)(rsize / 1024);
//procinfo->fMemVirtual = (Long_t)(vsize / 1024);
procinfo->fMemVirtual = (Long_t)(vprvt / 1024);
}
}
#endif
#if defined(R__LINUX)
////////////////////////////////////////////////////////////////////////////////
/// Get system info for Linux. Only fBusSpeed is not set.
static void GetLinuxSysInfo(SysInfo_t *sysinfo)
{
TString s;
FILE *f = fopen("/proc/cpuinfo", "r");
if (f) {
while (s.Gets(f)) {
if (s.BeginsWith("model name")) {
TPRegexp("^.+: *(.*$)").Substitute(s, "$1");
sysinfo->fModel = s;
}
if (s.BeginsWith("cpu MHz")) {
TPRegexp("^.+: *([^ ]+).*").Substitute(s, "$1");
sysinfo->fCpuSpeed = s.Atoi();
}
if (s.BeginsWith("cache size")) {
TPRegexp("^.+: *([^ ]+).*").Substitute(s, "$1");
sysinfo->fL2Cache = s.Atoi();
}
if (s.BeginsWith("processor")) {
TPRegexp("^.+: *([^ ]+).*").Substitute(s, "$1");
sysinfo->fCpus = s.Atoi();
sysinfo->fCpus++;
}
}
fclose(f);
}
f = fopen("/proc/meminfo", "r");
if (f) {
while (s.Gets(f)) {
if (s.BeginsWith("MemTotal")) {
TPRegexp("^.+: *([^ ]+).*").Substitute(s, "$1");
sysinfo->fPhysRam = (s.Atoi() / 1024);
break;
}
}
fclose(f);
}
f = gSystem->OpenPipe("uname -s -p", "r");
if (f) {
s.Gets(f);
Ssiz_t from = 0;
s.Tokenize(sysinfo->fOS, from);
s.Tokenize(sysinfo->fCpuType, from);
gSystem->ClosePipe(f);
}
}
////////////////////////////////////////////////////////////////////////////////
/// Get CPU load on Linux.
static void ReadLinuxCpu(long *ticks)
{
ticks[0] = ticks[1] = ticks[2] = ticks[3] = 0;
TString s;
FILE *f = fopen("/proc/stat", "r");
if (!f) return;
s.Gets(f);
// user, user nice, sys, idle
sscanf(s.Data(), "%*s %ld %ld %ld %ld", &ticks[0], &ticks[3], &ticks[1], &ticks[2]);
fclose(f);
}
////////////////////////////////////////////////////////////////////////////////
/// Get CPU stat for Linux. Use sampleTime to set the interval over which
/// the CPU load will be measured, in ms (default 1000).
static void GetLinuxCpuInfo(CpuInfo_t *cpuinfo, Int_t sampleTime)
{
Double_t avg[3] = { -1., -1., -1. };
#ifndef R__WINGCC
if (getloadavg(avg, sizeof(avg)) < 0) {
::Error("TUnixSystem::GetLinuxCpuInfo", "getloadavg failed");
} else
#endif
{
cpuinfo->fLoad1m = (Float_t)avg[0];
cpuinfo->fLoad5m = (Float_t)avg[1];
cpuinfo->fLoad15m = (Float_t)avg[2];
}
Long_t cpu_ticks1[4], cpu_ticks2[4];
ReadLinuxCpu(cpu_ticks1);
gSystem->Sleep(sampleTime);
ReadLinuxCpu(cpu_ticks2);
Long_t userticks = (cpu_ticks2[0] + cpu_ticks2[3]) -
(cpu_ticks1[0] + cpu_ticks1[3]);
Long_t systicks = cpu_ticks2[1] - cpu_ticks1[1];
Long_t idleticks = cpu_ticks2[2] - cpu_ticks1[2];
if (userticks < 0) userticks = 0;
if (systicks < 0) systicks = 0;
if (idleticks < 0) idleticks = 0;
Long_t totalticks = userticks + systicks + idleticks;
if (totalticks) {
cpuinfo->fUser = ((Float_t)(100 * userticks)) / ((Float_t)totalticks);
cpuinfo->fSys = ((Float_t)(100 * systicks)) / ((Float_t)totalticks);
cpuinfo->fTotal = cpuinfo->fUser + cpuinfo->fSys;
cpuinfo->fIdle = ((Float_t)(100 * idleticks)) / ((Float_t)totalticks);
}
}
////////////////////////////////////////////////////////////////////////////////
/// Get VM stat for Linux.
static void GetLinuxMemInfo(MemInfo_t *meminfo)
{
TString s;
FILE *f = fopen("/proc/meminfo", "r");
if (!f) return;
while (s.Gets(f)) {
if (s.BeginsWith("MemTotal")) {
TPRegexp("^.+: *([^ ]+).*").Substitute(s, "$1");
meminfo->fMemTotal = (s.Atoi() / 1024);
}
if (s.BeginsWith("MemFree")) {
TPRegexp("^.+: *([^ ]+).*").Substitute(s, "$1");
meminfo->fMemFree = (s.Atoi() / 1024);
}
if (s.BeginsWith("SwapTotal")) {
TPRegexp("^.+: *([^ ]+).*").Substitute(s, "$1");
meminfo->fSwapTotal = (s.Atoi() / 1024);
}
if (s.BeginsWith("SwapFree")) {
TPRegexp("^.+: *([^ ]+).*").Substitute(s, "$1");
meminfo->fSwapFree = (s.Atoi() / 1024);
}
}
fclose(f);
meminfo->fMemUsed = meminfo->fMemTotal - meminfo->fMemFree;
meminfo->fSwapUsed = meminfo->fSwapTotal - meminfo->fSwapFree;
}
////////////////////////////////////////////////////////////////////////////////
/// Get process info for this process on Linux.
static void GetLinuxProcInfo(ProcInfo_t *procinfo)
{
struct rusage ru;
if (getrusage(RUSAGE_SELF, &ru) < 0) {
::SysError("TUnixSystem::GetLinuxProcInfo", "getrusage failed");
} else {
procinfo->fCpuUser = (Float_t)(ru.ru_utime.tv_sec) +
((Float_t)(ru.ru_utime.tv_usec) / 1000000.);
procinfo->fCpuSys = (Float_t)(ru.ru_stime.tv_sec) +
((Float_t)(ru.ru_stime.tv_usec) / 1000000.);
}
procinfo->fMemVirtual = -1;
procinfo->fMemResident = -1;
TString s;
FILE *f = fopen(TString::Format("/proc/%d/statm", gSystem->GetPid()), "r");
if (f) {
s.Gets(f);
fclose(f);
Long_t total, rss;
sscanf(s.Data(), "%ld %ld", &total, &rss);
procinfo->fMemVirtual = total * (getpagesize() / 1024);
procinfo->fMemResident = rss * (getpagesize() / 1024);
}
}
#endif
////////////////////////////////////////////////////////////////////////////////
/// Returns static system info, like OS type, CPU type, number of CPUs
/// RAM size, etc into the SysInfo_t structure. Returns -1 in case of error,
/// 0 otherwise.
int TUnixSystem::GetSysInfo(SysInfo_t *info) const
{
if (!info) return -1;
static SysInfo_t sysinfo;
if (!sysinfo.fCpus) {
#if defined(R__MACOSX)
GetDarwinSysInfo(&sysinfo);
#elif defined(R__LINUX)
GetLinuxSysInfo(&sysinfo);
#endif
}
*info = sysinfo;
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Returns cpu load average and load info into the CpuInfo_t structure.
/// Returns -1 in case of error, 0 otherwise. Use sampleTime to set the
/// interval over which the CPU load will be measured, in ms (default 1000).
int TUnixSystem::GetCpuInfo(CpuInfo_t *info, Int_t sampleTime) const
{
if (!info) return -1;
#if defined(R__MACOSX)
GetDarwinCpuInfo(info, sampleTime);
#elif defined(R__LINUX)
GetLinuxCpuInfo(info, sampleTime);
#endif
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Returns ram and swap memory usage info into the MemInfo_t structure.
/// Returns -1 in case of error, 0 otherwise.
int TUnixSystem::GetMemInfo(MemInfo_t *info) const
{
if (!info) return -1;
#if defined(R__MACOSX)
GetDarwinMemInfo(info);
#elif defined(R__LINUX)
GetLinuxMemInfo(info);
#endif
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// Returns cpu and memory used by this process into the ProcInfo_t structure.
/// Returns -1 in case of error, 0 otherwise.
int TUnixSystem::GetProcInfo(ProcInfo_t *info) const
{
if (!info) return -1;
#if defined(R__MACOSX)
GetDarwinProcInfo(info);
#elif defined(R__LINUX)
GetLinuxProcInfo(info);
#endif
return 0;
}