Newer
Older
// Author: Stefan Wunsch, Enric Tejedor CERN 04/2019
// Original PyROOT code by Wim Lavrijsen, LBL
/*************************************************************************
* Copyright (C) 1995-2018, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "Python.h"
#include "CPyCppyy.h"
#include "PyROOTPythonize.h"
#include "CPPInstance.h"
#include "Utility.h"
#include "TInterpreter.h"
#include "TInterpreterValue.h"
#include <sstream>
// Parse positional arguments of the decorator
bool ParsePositionalArgs(PyObject* args)
{
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_RuntimeError, "Failed to parse positional arguments: Invalid tuple.");
}
if (PyTuple_Size(args) != 3) {
PyErr_SetString(PyExc_RuntimeError, "Failed to parse positional arguments: Expect exactly two positional arguments (list of input types, return type).");
}
auto instance = PyTuple_GetItem(args, 0);
auto inputTypes = PyTuple_GetItem(args, 1);
auto returnType = PyTuple_GetItem(args, 2);
// Attach arguments to instance
PyObject_SetAttrString(instance, "input_types", inputTypes);
PyObject_SetAttrString(instance, "return_type", returnType);
}
// Attach keyword to instance
bool AttachKeyword(PyObject* kwargs, PyObject* instance, const char* name)
{
PyObject* p;
if ((p = PyDict_GetItemString(kwargs, name))) {
const auto status = PyObject_IsTrue(p);
if (status == 1) {
PyObject_SetAttrString(instance, name, Py_True);
} else if (status == 0) {
PyObject_SetAttrString(instance, name, Py_False);
} else {
}
// Parse keyword arguments of the decorator
bool ParseKeywordArguments(PyObject* args, PyObject* kwargs)
{
if (!PyDict_Check(kwargs)) {
PyErr_SetString(PyExc_RuntimeError, "Failed to parse keyword arguments: Invalid dictionary.");
}
// Attach optional name to instance
auto instance = PyTuple_GetItem(args, 0);
PyObject* p;
if ((p = PyDict_GetItemString(kwargs, "name"))) {
if (!CPyCppyy_PyUnicode_Check(p)) {
PyErr_SetString(PyExc_RuntimeError,
"Failed to parse arguments: Given name is not a valid string.");
}
PyObject_SetAttrString(instance, "name", p);
}
// Attach optional numpy_only flag to instance
if (!AttachKeyword(kwargs, instance, "numba_only")) {
PyErr_SetString(PyExc_RuntimeError,
"Failed to parse arguments: Given object for numba_only cannot be evaluated as a boolean.");
}
// Attach optional generic_only flag to instance
if (!AttachKeyword(kwargs, instance, "generic_only")) {
PyErr_SetString(PyExc_RuntimeError,
"Failed to parse arguments: Given object for generic_only cannot be evaluated as a boolean.");
}
// Attach optional verbose flag
if (!AttachKeyword(kwargs, instance, "verbose")) {
PyErr_SetString(PyExc_RuntimeError,
"Failed to parse arguments: Given object for verbose flag cannot be evaluated as a boolean.");
}
// Init of class used as decorator to create generic C++ wrapper
// The init parses the arguments passed to the decorator.
PyObject* GenericCallableImpl_init(PyObject * /*self*/, PyObject *args, PyObject *kwargs)
{
if(!ParsePositionalArgs(args)) return NULL;
if(kwargs != 0) {
if(!ParseKeywordArguments(args, kwargs)) return NULL;
}
Py_RETURN_NONE;
}
// Check arguments given to call operator of the decorator
bool CheckCallArgs(PyObject* args)
{
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_RuntimeError, "Failed to parse arguments: Invalid tuple.");
}
if (!(PyTuple_Size(args) == 2)) {
PyErr_SetString(PyExc_RuntimeError, "Failed to parse arguments: Expect exactly one argument (Python callable).");
}
// Check instance passed from init to call operator of the decorator
bool CheckInstance(PyObject* instance)
{
if (!PyObject_HasAttrString(instance, "input_types")) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: No input_types attribute found.");
}
if (!PyObject_HasAttrString(instance, "return_type")) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: No return_type attribute found.");
}
// Check callable passed to decorator
bool CheckCallable(PyObject* callable)
{
if (!PyCallable_Check(callable)) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Given PyObject is not callable.");
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
}
// Extract name of callable passed to call operator of the decorator.
// Either extract the name from the optional keyword argument or from the
// __name__ property of the callable itself.
std::string ExtractName(PyObject* instance, PyObject* pyfunc)
{
PyObject* pyname;
if (PyObject_HasAttrString(instance, "name")) {
pyname = PyObject_GetAttrString(instance, "name");
} else {
if (!PyObject_HasAttrString(pyfunc, "__name__")) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Python callable does not have attribute __name__.");
return "";
}
pyname = PyObject_GetAttrString(pyfunc, "__name__");
}
std::string name = CPyCppyy_PyUnicode_AsString(pyname);
Py_DECREF(pyname);
return name;
}
// Call method of class used as decorator to create generic C++ wrapper
// The call method creates the C++ wrapper class for the Python callable and
// passes through the actual callable.
PyObject* GenericCallableImpl_call(PyObject * /*self*/, PyObject *args)
{
// Parse arguments
if(!CheckCallArgs(args)) return NULL;
auto instance = PyTuple_GetItem(args, 0);
auto pyfunc = PyTuple_GetItem(args, 1);
if(!CheckCallable(pyfunc)) return NULL;
Py_INCREF(pyfunc);
if(!CheckInstance(instance)) return NULL;
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
auto inputTypes = PyObject_GetAttrString(instance, "input_types");
auto returnType = PyObject_GetAttrString(instance, "return_type");
// Extract name of Python callable
auto name = ExtractName(instance, pyfunc);
if (name.compare("") == 0) return NULL;
// Get C++ return type
if (!CPyCppyy_PyUnicode_Check(returnType)) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Return type argument cannot be interpreted as string.");
return NULL;
}
std::string returnTypeStr = CPyCppyy_PyUnicode_AsString(returnType);
Py_DECREF(returnType);
if (returnTypeStr.compare("") == 0) {
returnTypeStr = "void";
}
// Put function in namespace
std::stringstream code;
code << "namespace CppCallable {\n";
// Set return type
code << returnTypeStr << " ";
// Set name of Python callable as function name
code << name;
// Build function signature, type string and list of variables
code << "(";
auto iter = PyObject_GetIter(inputTypes);
auto inputTypesSize = PyObject_Size(inputTypes);
Py_DECREF(inputTypes);
if (!iter) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Failed to iterate over input types.");
return NULL;
}
// Map C++ types to type characters of Python/C API (PyObject_CallFunction)
std::map<std::string, std::string> typemap = {
{"float", "f"},
{"double", "f"},
{"int", "i"},
{"unsigned int", "I"},
{"long", "l"},
{"unsigned long", "k"},
};
PyObject *item;
auto idx = 0u;
std::stringstream typestr;
std::vector<std::string> pytypes(inputTypesSize);
std::vector<std::string> inputTypesStr(inputTypesSize);
std::stringstream vars;
while ((item = PyIter_Next(iter))) {
// Convert argument to string
if (!CPyCppyy_PyUnicode_Check(item)) {
Py_DECREF(iter);
Py_DECREF(item);
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Failed to interpret input type as string.");
return NULL;
}
inputTypesStr[idx] = CPyCppyy_PyUnicode_AsString(item);
Py_DECREF(item);
auto pytype = typemap.find(inputTypesStr[idx]);
if (pytype != typemap.end()) { // Types in typemap
pytypes[idx] = pytype->second;
vars << pytypes[idx] << "_" << idx;
code << inputTypesStr[idx] << " " << pytypes[idx] << "_" << idx;
} else if (inputTypesStr[idx].compare("") == 0) { // No input type
pytypes[idx] = "";
} else if (inputTypesStr[idx].compare("bool") == 0) { // Bool
pytypes[idx] = "O";
vars << "pyb_" << idx;
code << inputTypesStr[idx] << " b_" << idx;
} else { // C++ object
pytypes[idx] = "O";
vars << "pyo_" << idx;
code << inputTypesStr[idx] << "& o_" << idx;
}
typestr << pytypes[idx];
if (idx != inputTypesSize - 1 && pytypes[idx].compare("") != 0) {
code << ", ";
vars << ", ";
}
idx++;
}
Py_DECREF(iter);
// Acquire lock to protect multi-threaded scenarios
code << ") {\n"
<< " // Acquire lock to protect multi-threaded scenarios\n"
<< " R__WRITE_LOCKGUARD(ROOT::gCoreMutex);\n\n";
// Get pointer to Python callable
code << " // Get Python callable from pointer\n"
<< " auto pyfunc = reinterpret_cast<PyObject*>(" << pyfunc << ");\n"
<< " if (!PyCallable_Check(pyfunc)) {\n"
<< " throw std::runtime_error(\"Python object " << name << " is not callable.\");\n"
<< " }\n\n";
// Build Python proxies of the C++ objects for Python
code << " // Build Python proxies for C++ objects\n";
std::stringstream cleanup; // Register clean-up code
bool hasPyBoolIncref = false;
for (std::size_t i = 0; i < pytypes.size(); i++) {
if (inputTypesStr[i].compare("bool") == 0) { // Bool
if (!hasPyBoolIncref) {
code << " Py_INCREF(Py_True);\n"
<< " Py_INCREF(Py_False);\n";
cleanup << " Py_DECREF(Py_True);\n"
<< " Py_DECREF(Py_False);\n";
hasPyBoolIncref = true;
}
code << " auto pyb_" << i << " = b_" << i << " ? Py_True : Py_False;\n";
} else if (pytypes[i] == "O") { // C++ objects
code << " auto pyo_" << i << " = TPython::CPPInstance_FromVoidPtr("
<< "&o_" << i << ", \"" << inputTypesStr[i] << "\");\n";
cleanup << " Py_DECREF(pyo_" << i << ");\n";
}
}
code << "\n";
// Call Python callable
auto typestr_str = typestr.str();
auto vars_str = vars.str();
if (vars_str.compare("") != 0) {
vars_str = ", " + vars_str;
}
code << " // Call Python callable\n"
<< " auto pyresult = PyObject_CallFunction(pyfunc, (char*)\"" << typestr_str << "\"" << vars_str << ");\n"
<< " if (pyresult == 0) {\n"
<< " PyErr_Print();\n"
<< " throw std::runtime_error(\"Failed to call Python callable " << name << ".\");\n"
<< " }\n\n";
// Clean-up Python proxies
code << " // Clean-up Python proxies\n"
<< cleanup.str()
<< "\n";
// Convert result to C++ type
code << " // Convert result to C++ type\n";
if (returnTypeStr.compare("void") == 0) {
code << " Py_DECREF(pyresult);\n\n"
<< " return;\n";
} else if (returnTypeStr.compare("bool") == 0) {
code << " if (pyresult == Py_True) {\n"
<< " Py_DECREF(pyresult);\n"
<< " return true;\n"
<< " } else if (pyresult == Py_False) {\n"
<< " Py_DECREF(pyresult);\n"
<< " return false;\n"
<< " } else {\n"
<< " PyErr_Print();\n"
<< " throw std::runtime_error(\"Failed to convert return value of Python callable to C++ object: Python object is not of type PyBool.\");\n"
<< " }\n";
} else {
auto pytype = typemap.find(returnTypeStr);
if (pytype != typemap.end()) {
if (pytype->second == "f") {
code << " auto result = PyFloat_AsDouble(pyresult);\n";
} else if (pytype->second == "i" || pytype->second == "l") {
code << " auto result = PyLong_AsLong(pyresult);\n";
} else if (pytype->second == "I" || pytype->second == "k") {
code << " auto result = PyLong_AsUnsignedLong(pyresult);\n";
}
} else {
code << " if (!TPython::CPPInstance_Check(pyresult)) {\n"
<< " throw std::runtime_error(\"Failed to convert return value of Python callable to C++ object: Python object is not created by cppyy (CPPInstance).\");\n"
<< " \n"
<< " }\n";
code << " auto result = *reinterpret_cast<" << returnTypeStr << "*>(TPython::CPPInstance_AsVoidPtr(pyresult));\n";
}
code << " Py_DECREF(pyresult);\n\n"
<< " return result;\n";
}
code << "}\n}";
// Attach C++ wrapper code to callable
auto code_str = code.str();
auto code_cstr = code_str.c_str();
auto pycode = CPyCppyy_PyUnicode_FromString(code_cstr);
PyObject_SetAttrString(pyfunc, "__cpp_wrapper__", pycode);
Py_DECREF(pycode);
// Jit C++ wrapper
auto err = gInterpreter->Declare("#include \"Python.h\"");
if (!err) {
PyErr_SetString(PyExc_RuntimeError, "Failed to compile C++ wrapper: Failed to include Python.h.");
return NULL;
}
err = gInterpreter->Declare("#include \"CPyCppyy/TPython.h\"");
if (!err) {
PyErr_SetString(PyExc_RuntimeError, "Failed to compile C++ wrapper: Failed to include TPython.h.");
return NULL;
}
err = gInterpreter->Declare(code_cstr);
if (!err) {
PyErr_SetString(PyExc_RuntimeError,
("Failed to compile C++ wrapper: Compilation error from following wrapper code.\n" + code.str()).c_str());
return NULL;
}
// Pass through Python callable
return pyfunc;
}
// Call method of class used as decorator to create C++ wrapper using numba
// The call method creates the C++ wrapper class for the Python callable and
// passes through the actual callable.
PyObject* NumbaCallableImpl_call(PyObject * /*self*/, PyObject *args)
{
// Parse arguments
if(!CheckCallArgs(args)) return NULL;
auto instance = PyTuple_GetItem(args, 0);
auto pyfunc = PyTuple_GetItem(args, 1);
if(!CheckCallable(pyfunc)) return NULL;
Py_INCREF(pyfunc);
if(!CheckInstance(instance)) return NULL;
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
auto inputTypes = PyObject_GetAttrString(instance, "input_types");
auto returnType = PyObject_GetAttrString(instance, "return_type");
// Extract name of Python callable
auto name = ExtractName(instance, pyfunc);
if (name.compare("") == 0) return NULL;
// Get C++ return type
if (!CPyCppyy_PyUnicode_Check(returnType)) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Return type argument cannot be interpreted as string.");
return NULL;
}
std::string returnTypeStr = CPyCppyy_PyUnicode_AsString(returnType);
Py_DECREF(returnType);
if (returnTypeStr.compare("") == 0) {
returnTypeStr = "void";
}
// Find numba types for C++ types
std::map<std::string, std::string> typemap = {
{"float", "float32"},
{"double", "float64"},
{"int", "int32"},
{"unsigned int", "uint32"},
{"long", "int64"},
{"unsigned long", "uint64"},
{"bool", "boolean"},
};
auto iter = PyObject_GetIter(inputTypes);
Py_DECREF(inputTypes);
if (!iter) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Failed to iterate over input types.");
return NULL;
}
PyObject *item;
std::vector<std::string> numbaTypes;
std::vector<std::string> cppTypes;
while ((item = PyIter_Next(iter))) {
// Convert argument to string
if (!CPyCppyy_PyUnicode_Check(item)) {
Py_DECREF(iter);
Py_DECREF(item);
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Failed to interpret input type as string.");
return NULL;
}
const std::string cpptype = CPyCppyy_PyUnicode_AsString(item);
Py_DECREF(item);
auto t = typemap.find(cpptype);
if (t != typemap.end()) { // Types in typemap
numbaTypes.emplace_back(t->second);
cppTypes.emplace_back(cpptype);
} else if (cpptype.compare("") == 0) { // No input, skip
} else {
Py_DECREF(iter);
Py_DECREF(item);
PyErr_SetString(PyExc_RuntimeError,
("Failed to create C++ callable: Input type " + cpptype + " is not valid for jitting with numba.").c_str());
return NULL;
}
}
Py_DECREF(iter);
// Import numba
auto numba = PyImport_ImportModule("numba");
if (!numba) {
PyErr_SetString(PyExc_RuntimeError, "Failed to import numba.");
return NULL;
}
// Get cfunc method
auto cfunc = PyObject_GetAttrString(numba, "cfunc");
Py_DECREF(numba);
if (!cfunc) {
PyErr_SetString(PyExc_RuntimeError, "Failed to import cfunc from numba.");
return NULL;
}
// Jit Python callable
std::stringstream numbaSignature;
auto t = typemap.find(returnTypeStr);
if (t != typemap.end()) {
numbaSignature << typemap[returnTypeStr] << "(";
} else if (returnTypeStr.compare("") == 0 || returnTypeStr.compare("void") == 0) {
numbaSignature << "void(";
} else {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Return type is not valid for jitting with numba.");
return NULL;
}
for(std::size_t i = 0; i < numbaTypes.size(); i++) {
numbaSignature << numbaTypes[i];
if (i != numbaTypes.size() - 1) {
numbaSignature << ", ";
}
}
numbaSignature << ")";
auto numbaSignatureStr = numbaSignature.str();
auto args_ = Py_BuildValue("(s)", (char*)numbaSignatureStr.c_str());
auto kwargs_ = Py_BuildValue("{s:O}", (char*)"nopython", Py_True);
auto decorator = PyObject_Call(cfunc, args_, kwargs_);
Py_DECREF(cfunc);
if (!decorator) {
PyErr_SetString(PyExc_RuntimeError,
("Failed to create C++ callable: Unable to create instance of numba.cfunc with signature "
+ numbaSignatureStr + ".").c_str());
return NULL;
}
Py_DECREF(args_);
Py_DECREF(kwargs_);
auto jitted = PyObject_CallFunction(decorator, (char*)"O", pyfunc);
Py_DECREF(decorator);
if (!jitted) {
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);
auto pyerr = PyObject_Str(value);
std::string pyerrstr = CPyCppyy_PyUnicode_AsString(pyerr);
PyErr_SetString(PyExc_RuntimeError,
("Failed to create C++ callable: Unable to jit function using numba.cfunc with signature "
+ numbaSignatureStr + ":\n" + pyerrstr).c_str());
Py_DECREF(pyerr);
Py_DECREF(type);
Py_DECREF(value);
Py_DECREF(traceback);
return NULL;
}
// Attach jitted function to callable
PyObject_SetAttrString(pyfunc, "__numba_cfunc__", jitted);
Py_DECREF(jitted);
// Extract function pointer
auto pyaddress = PyObject_GetAttrString(jitted, "address");
if (!pyaddress) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create C++ callable: Unable to extract function pointer from numba.cfunc.");
return NULL;
}
auto address = PyLong_AsUnsignedLongLong(pyaddress);
// Put wrapper function in ROOT namespace
std::stringstream code;
code << "namespace CppCallable {\n";
// Set return type of wrapper functoin
code << returnTypeStr << " ";
// Set name of Python callable as function name
code << name;
// Build function signature, function pointer cast and variable list
code << "(";
std::stringstream vars;
std::stringstream fPtr;
fPtr << returnTypeStr << "(*)(";
for(std::size_t i = 0; i < cppTypes.size(); i++) {
code << cppTypes[i] << " x_" << i;
vars << "x_" << i;
fPtr << cppTypes[i];
if (i != cppTypes.size() - 1) {
code << ", ";
vars << ", ";
fPtr << ", ";
}
}
code << ") {\n";
fPtr << ")";
// Cast int to C function pointer
code << " auto funcptr = reinterpret_cast<" << fPtr.str() << ">(" << address << ");\n";
// Return result
code << " return funcptr(" << vars.str() << ");\n";
// Close function and namespace
code << "}\n}";
// Jit C++ wrapper
auto code_str = code.str();
auto code_cstr = code_str.c_str();
auto err = gInterpreter->Declare(code_cstr);
if (!err) {
PyErr_SetString(PyExc_RuntimeError,
("Failed to compile C++ wrapper: Compilation error from following wrapper code.\n" + code.str()).c_str());
return NULL;
}
// Attach code function to callable
auto pycode = CPyCppyy_PyUnicode_FromString(code_cstr);
PyObject_SetAttrString(pyfunc, "__cpp_wrapper__", pycode);
Py_DECREF(pycode);
// Pass through Python callable
return pyfunc;
}
bool GetKeyword(PyObject* obj, const char* name, bool defaultVal)
{
bool prop = defaultVal;
if (PyObject_HasAttrString(obj, name)) {
auto attr = PyObject_GetAttrString(obj, name);
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
prop = PyObject_IsTrue(attr);
Py_DECREF(attr);
}
return prop;
}
// Call method of class used as decorator to create either generic or numba C++ wrapper.
// The call method creates the C++ wrapper class for the Python callable and
// passes through the actual callable.
PyObject* ProxyCallableImpl_call(PyObject * /*self*/, PyObject *args)
{
// Get numba_only and generic_only optional arguments
// The arguments are interpreted as follows (in this order):
// 1) numba_only = true , generic_only = true or false: Just try numba implementation
// 2) numba_only = false, generic_only = true: Just try generic implementation
// 3) numba_only = false, generic_only = false: Try numba first, fail silently, go to generic (default setting)
auto instance = PyTuple_GetItem(args, 0);
auto numbaOnly = GetKeyword(instance, "numba_only", false);
auto genericOnly = GetKeyword(instance, "generic_only", false);
auto verbose = GetKeyword(instance, "verbose", true);
// Case 1) Use only numba
if (numbaOnly) {
return NumbaCallableImpl_call(NULL, args);
}
// Case 2) Use only generic
else if (genericOnly) {
return GenericCallableImpl_call(NULL, args);
}
// Case 3) Try first numba and then fall back to generic
else {
auto pyfunc = NumbaCallableImpl_call(NULL, args);
if (pyfunc) {
return pyfunc;
} else {
if (verbose) {
PyErr_WarnEx(PyExc_RuntimeWarning,
"Failed to compile Python callable using numba, fall back to generic implementation. Note that the generic implementation is potentially slow and does not allow multi-threading.", 1);
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
}
return GenericCallableImpl_call(NULL, args);
}
}
}
// Method definition for class used as decorator to create C++ wrapper
static PyMethodDef CallableImplMethods[] =
{
{"__init__", (PyCFunction)GenericCallableImpl_init, METH_VARARGS|METH_KEYWORDS, "Parse decorator arguments"},
{"__call__", ProxyCallableImpl_call, METH_VARARGS, "Create C++ wrapper function"},
{NULL},
};
// Proxy to return the C++ wrapper class which can be used as decorator
PyObject *PyROOT::GetCppCallableClass(PyObject * /*self*/, PyObject * args) {
// Parse argument to get type of callable class
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_RuntimeError, "Failed to create callable class: Invalid tuple.");
return NULL;
}
// Create wrapper class for decorator
auto classDict = PyDict_New();
auto className = CPyCppyy_PyUnicode_FromString("CppCallableImpl");
auto classBases = PyTuple_New(0);
// Add methods
for (auto def = CallableImplMethods; def->ml_name != NULL; def++) {
auto func = PyCFunction_New(def, NULL);
#if PY_VERSION_HEX < 0x03000000
auto method = PyMethod_New(func, NULL, NULL);
#else
auto method = PyInstanceMethod_New(func);
#endif
PyDict_SetItemString(classDict, def->ml_name, method);
Py_DECREF(func);
Py_DECREF(method);
}
auto callableClass = PyObject_CallFunctionObjArgs(
(PyObject*)&PyType_Type, className, classBases, classDict, NULL);
Py_DECREF(className);
Py_DECREF(classBases);
Py_DECREF(classDict);
// Return implementation class
return callableClass;
}