diff --git a/4-Classification/4-Applied/README.md b/4-Classification/4-Applied/README.md
index cad728f34cf02461f0a54d626f61f60ea7cd2375..b6fb5450b06eff99651262f4351eb54a73a9f40b 100644
--- a/4-Classification/4-Applied/README.md
+++ b/4-Classification/4-Applied/README.md
@@ -219,7 +219,7 @@ You can use your model directly in a web app. This architecture also allows you
 1. First, import the [Onnx Runtime](https://www.onnxruntime.ai/):
 
     ```html
-    <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.8.0-dev.20210608.0/dist/ort.min.js"></script> 
+    <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.9.09/dist/ort.min.js"></script> 
     ```
 
     > Onnx Runtime is used to enable running your Onnx models across a wide range of hardware platforms, including optimizations and an API to use.
diff --git a/4-Classification/4-Applied/solution/index.html b/4-Classification/4-Applied/solution/index.html
index ccea31e4baccc1fdb1b01919f54cac4a8e4310de..3ba07707e05ea3fea2dc16d0432822147a22d459 100644
--- a/4-Classification/4-Applied/solution/index.html
+++ b/4-Classification/4-Applied/solution/index.html
@@ -45,7 +45,7 @@
             <button onClick="startInference()">What kind of cuisine can you make?</button>
         </div>      
         <!-- import ONNXRuntime Web from CDN -->
-        <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.8.0-dev.20210608.0/dist/ort.min.js"></script>
+        <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.9.0/dist/ort.min.js"></script>
         <script>
             const ingredients = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]