diff --git a/4-Classification/4-Applied/README.md b/4-Classification/4-Applied/README.md index cad728f34cf02461f0a54d626f61f60ea7cd2375..b6fb5450b06eff99651262f4351eb54a73a9f40b 100644 --- a/4-Classification/4-Applied/README.md +++ b/4-Classification/4-Applied/README.md @@ -219,7 +219,7 @@ You can use your model directly in a web app. This architecture also allows you 1. First, import the [Onnx Runtime](https://www.onnxruntime.ai/): ```html - <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.8.0-dev.20210608.0/dist/ort.min.js"></script> + <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.9.09/dist/ort.min.js"></script> ``` > Onnx Runtime is used to enable running your Onnx models across a wide range of hardware platforms, including optimizations and an API to use. diff --git a/4-Classification/4-Applied/solution/index.html b/4-Classification/4-Applied/solution/index.html index ccea31e4baccc1fdb1b01919f54cac4a8e4310de..3ba07707e05ea3fea2dc16d0432822147a22d459 100644 --- a/4-Classification/4-Applied/solution/index.html +++ b/4-Classification/4-Applied/solution/index.html @@ -45,7 +45,7 @@ <button onClick="startInference()">What kind of cuisine can you make?</button> </div> <!-- import ONNXRuntime Web from CDN --> - <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.8.0-dev.20210608.0/dist/ort.min.js"></script> + <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.9.0/dist/ort.min.js"></script> <script> const ingredients = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]