// @(#)root/test:$name: $:$id: stressHistogram.cxx,v 1.15 2002/10/25 10:47:51 rdm exp $ // Authors: David Gonzalez Maline November 2008 //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*// // // // // // Here there is a set of tests for the histogram classes (including // // histograms and profiles). The methods tested work on: // // // // 1. Projection testing (with and without weights) // // 2. Rebinning // // 3. Addition, multiplication an division operations. // // 4. Building and copying instances. // // 5. I/O functionality (including reference with older versions). // // 6. Labeling. // // 7. Interpolation // // // // To see the tests individually, at the bottom of the file the tests // // are exectued using the structure TTestSuite, that defines the // // subset, the number of routines to be tested as well as the pointes // // for these. Every tests is mean to be simple enough to be understood // // without much comments. // // // // Finally, for debugging reasons, the struct compareOptions can be // // used to define the level of output of the tests, beging set // // generally for the whole suit in defaultEqualOptions. // // // // // // An example of output when all the tests run OK is shown below: // // **************************************************************************** // // * Starting stress H I S T O G R A M * // // **************************************************************************** // // Test 1: Testing Projections without weights..............................OK // // Test 2: Testing Projections with weights.................................OK // // Test 3: Histogram Rebinning..............................................OK // // Test 4: Add tests for 1D, 2D and 3D Histograms and Profiles..............OK // // Test 5: Multiply tests for 1D, 2D and 3D Histograms......................OK // // Test 6: Divide tests for 1D, 2D and 3D Histograms........................OK // // Test 7: Copy tests for 1D, 2D and 3D Histograms and Profiles.............OK // // Test 8: Read/Write tests for 1D, 2D and 3D Histograms and Profiles.......OK // // Test 9: Merge tests for 1D, 2D and 3D Histograms and Profiles............OK // // Test 10: Label tests for 1D Histograms (TAxis)............................OK // // Test 11: Interpolation tests for Histograms...............................OK // // Test 12: Reference File Read for Histograms and Profiles..................OK // // **************************************************************************** // // stressHistogram: Real Time = 48.82 seconds Cpu Time = 48.66 seconds // // ROOTMARKS = 565.557 ROOT version: 5.23/01 branches/dev/mathDev@27607 // // **************************************************************************** // // // //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*// #include <sstream> #include <cmath> #include "TH2.h" #include "TH3.h" #include "TH2.h" #include "THnSparse.h" #include "TProfile.h" #include "TProfile2D.h" #include "TProfile3D.h" #include "TApplication.h" #include "TBenchmark.h" #include "Riostream.h" #include "TMath.h" #include "TRandom2.h" #include "TFile.h" #include "TROOT.h" #include <algorithm> const unsigned int __DRAW__ = 0; const Double_t minRange = 1; const Double_t maxRange = 5; const Double_t minRebin = 3; const Double_t maxRebin = 7; const int minBinValue = 1; const int maxBinValue = 10; const int nEvents = 1000; const int numberOfBins = 10; enum compareOptions { cmpOptNone=0, cmpOptPrint=1, cmpOptDebug=2, cmpOptNoError=4, cmpOptStats=8 }; const int defaultEqualOptions = 0; //cmpOptPrint; const double defaultErrorLimit = 1.E-10; enum RefFileEnum { refFileRead = 1, refFileWrite = 2 }; const int refFileOption = 1; TFile * refFile = 0; const char* refFileName = "http://root.cern.ch/files/stressHistogram.5.18.00.root"; TRandom2 r; // set to zero if want to run different every time const int initialSeed = 111; typedef bool ( * pointer2Test) (); struct TTestSuite { unsigned int nTests; char suiteName[75]; pointer2Test* tests; }; // Methods for histogram comparisions (later implemented) void printResult(const char* msg, bool status); int equals(const char* msg, TH1D* h1, TH1D* h2, int options = 0, double ERRORLIMIT = defaultErrorLimit); int equals(const char* msg, TH2D* h1, TH2D* h2, int options = 0, double ERRORLIMIT = defaultErrorLimit); int equals(const char* msg, TH3D* h1, TH3D* h2, int options = 0, double ERRORLIMIT = defaultErrorLimit); int equals(const char* msg, THnSparse* h1, THnSparse* h2, int options = 0, double ERRORLIMIT = defaultErrorLimit); int equals(Double_t n1, Double_t n2, double ERRORLIMIT = defaultErrorLimit); int compareStatistics( TH1* h1, TH1* h2, bool debug, double ERRORLIMIT = defaultErrorLimit); ostream& operator<<(ostream& out, TH1D* h); // old stresHistOpts.cxx file bool testAdd1() { // Tests the first Add method for 1D Histograms Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TH1D* h1 = new TH1D("t1D1-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("t1D1-h2", "h2-Title", numberOfBins, minRange, maxRange); TH1D* h3 = new TH1D("t1D1-h3", "h3=c1*h1+c2*h2", numberOfBins, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); h3->Fill(value, c1); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(value, 1.0); h3->Fill(value, c2); } TH1D* h4 = new TH1D("t1D1-h4", "h4=c1*h1+h2*c2", numberOfBins, minRange, maxRange); h4->Add(h1, h2, c1, c2); bool ret = equals("Add1D1", h3, h4, cmpOptStats, 1E-13); delete h1; delete h2; delete h3; return ret; } bool testAddProfile1() { // Tests the first Add method for 1D Profiles Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TProfile* p1 = new TProfile("t1D1-p1", "p1-Title", numberOfBins, minRange, maxRange); TProfile* p2 = new TProfile("t1D1-p2", "p2-Title", numberOfBins, minRange, maxRange); TProfile* p3 = new TProfile("t1D1-p3", "p3=c1*p1+c2*p2", numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); p3->Fill(x, y, c1); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); p3->Fill(x, y, c2); } TProfile* p4 = new TProfile("t1D1-p4", "p4=c1*p1+p2*c2", numberOfBins, minRange, maxRange); p4->Add(p1, p2, c1, c2); bool ret = equals("Add1DProfile1", p3, p4, cmpOptStats, 1E-13); delete p1; delete p2; delete p3; return ret; } bool testAdd2() { // Tests the second Add method for 1D Histograms Double_t c2 = r.Rndm(); TH1D* h5 = new TH1D("t1D2-h5", "h5= h6+c2*h7", numberOfBins, minRange, maxRange); TH1D* h6 = new TH1D("t1D2-h6", "h6-Title", numberOfBins, minRange, maxRange); TH1D* h7 = new TH1D("t1D2-h7", "h7-Title", numberOfBins, minRange, maxRange); h5->Sumw2();h6->Sumw2();h7->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h6->Fill(value, 1.0); h5->Fill(value, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h7->Fill(value, 1.0); h5->Fill(value, c2); } h6->Add(h7, c2); bool ret = equals("Add1D2", h5, h6, cmpOptStats, 1E-13); delete h5; delete h7; return ret; } bool testAddProfile2() { // Tests the second Add method for 1D Profiles Double_t c2 = r.Rndm(); TProfile* p5 = new TProfile("t1D2-p5", "p5= p6+c2*p7", numberOfBins, minRange, maxRange); TProfile* p6 = new TProfile("t1D2-p6", "p6-Title", numberOfBins, minRange, maxRange); TProfile* p7 = new TProfile("t1D2-p7", "p7-Title", numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p6->Fill(x, y, 1.0); p5->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p7->Fill(x, y, 1.0); p5->Fill(x, y, c2); } p6->Add(p7, c2); bool ret = equals("Add1DProfile2", p5, p6, cmpOptStats, 1E-13); delete p5; delete p7; return ret; } bool testAdd3() { // Tests the first add method to do scalation of 1D Histograms Double_t c1 = r.Rndm(); TH1D* h1 = new TH1D("t1D1-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("t1D1-h2", "h2=c1*h1+c2*h2", numberOfBins, minRange, maxRange); h1->Sumw2();h2->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); h2->Fill(value, c1 / h1->GetBinWidth( h1->FindBin(value) ) ); } TH1D* h3 = new TH1D("t1D1-h3", "h3=c1*h1", numberOfBins, minRange, maxRange); h3->Add(h1, h1, c1, -1); bool ret = equals("Add1D1", h2, h3, cmpOptStats, 1E-13); delete h1; delete h2; return ret; } bool testAdd2D3() { // Tests the first add method to do scalation of 2D Histograms Double_t c1 = r.Rndm(); TH2D* h1 = new TH2D("t1D1-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins+2, minRange, maxRange); TH2D* h2 = new TH2D("t1D1-h2", "h2=c1*h1+c2*h2", numberOfBins, minRange, maxRange, numberOfBins+2, minRange, maxRange); h1->Sumw2();h2->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); Int_t binx = h1->GetXaxis()->FindBin(x); Int_t biny = h1->GetYaxis()->FindBin(y); Double_t area = h1->GetXaxis()->GetBinWidth( binx ) * h1->GetYaxis()->GetBinWidth( biny ); h2->Fill(x, y, c1 / area); } TH2D* h3 = new TH2D("t1D1-h3", "h3=c1*h1", numberOfBins, minRange, maxRange, numberOfBins+2, minRange, maxRange); h3->Add(h1, h1, c1, -1); bool ret = equals("Add1D2", h2, h3, cmpOptStats, 1E-10); delete h1; delete h2; return ret; } bool testAdd3D3() { // Tests the first add method to do scalation of 3D Histograms Double_t c1 = r.Rndm(); TH3D* h1 = new TH3D("t1D1-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins+1, minRange, maxRange, numberOfBins+2, minRange, maxRange); TH3D* h2 = new TH3D("t1D1-h2", "h2=c1*h1+c2*h2", numberOfBins, minRange, maxRange, numberOfBins+1, minRange, maxRange, numberOfBins+2, minRange, maxRange); h1->Sumw2();h2->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); Int_t binx = h1->GetXaxis()->FindBin(x); Int_t biny = h1->GetYaxis()->FindBin(y); Int_t binz = h1->GetZaxis()->FindBin(z); Double_t area = h1->GetXaxis()->GetBinWidth( binx ) * h1->GetYaxis()->GetBinWidth( biny ) * h1->GetZaxis()->GetBinWidth( binz ); h2->Fill(x, y, z, c1 / area); } TH3D* h3 = new TH3D("t1D1-h3", "h3=c1*h1", numberOfBins, minRange, maxRange, numberOfBins+1, minRange, maxRange, numberOfBins+2, minRange, maxRange); h3->Add(h1, h1, c1, -1); bool ret = equals("Add2D3", h2, h3, cmpOptStats, 1E-10); delete h1; delete h2; return ret; } bool testAdd2D1() { // Tests the first Add method for 2D Histograms Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TH2D* h1 = new TH2D("t2D1-h1", "h1", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("t2D1-h2", "h2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("t2D1-h3", "h3=c1*h1+c2*h2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); h3->Fill(x, y, c1); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h3->Fill(x, y, c2); } TH2D* h4 = new TH2D("t2D1-h4", "h4=c1*h1+c2*h2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h4->Add(h1, h2, c1, c2); bool ret = equals("Add2D1", h3, h4, cmpOptStats , 1E-10); delete h1; delete h2; delete h3; return ret; } bool testAdd2DProfile1() { // Tests the first Add method for 1D Profiles Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TProfile2D* p1 = new TProfile2D("t2D1-p1", "p1", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p2 = new TProfile2D("t2D1-p2", "p2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p3 = new TProfile2D("t2D1-p3", "p3=c1*p1+c2*p2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); p3->Fill(x, y, z, c1); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); p3->Fill(x, y, z, c2); } TProfile2D* p4 = new TProfile2D("t2D1-p4", "p4=c1*p1+c2*p2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); p4->Add(p1, p2, c1, c2); bool ret = equals("Add2DProfile1", p3, p4, cmpOptStats , 1E-10); delete p1; delete p2; delete p3; return ret; } bool testAdd2D2() { // Tests the second Add method for 2D Histograms Double_t c2 = r.Rndm(); TH2D* h1 = new TH2D("t2D2-h1", "h1", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("t2D2-h2", "h2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("t2D2-h3", "h3=h1+c2*h2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); h3->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h3->Fill(x, y, c2); } h1->Add(h2, c2); bool ret = equals("Add2D2", h3, h1, cmpOptStats, 1E-10); delete h2; delete h3; return ret; } bool testAdd2DProfile2() { // Tests the second Add method for 2D Profiles Double_t c2 = r.Rndm(); TProfile2D* p1 = new TProfile2D("t2D2-p1", "p1", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p2 = new TProfile2D("t2D2-p2", "p2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p3 = new TProfile2D("t2D2-p3", "p3=p1+c2*p2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); p3->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); p3->Fill(x, y, z, c2); } p1->Add(p2, c2); bool ret = equals("Add2DProfile2", p3, p1, cmpOptStats, 1E-10); delete p2; delete p3; return ret; } bool testAdd3D1() { // Tests the first Add method for 3D Histograms Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TH3D* h1 = new TH3D("t3D1-h1", "h1", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("t3D1-h2", "h2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("t3D1-h3", "h3=c1*h1+c2*h2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); h3->Fill(x, y, z, c1); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h3->Fill(x, y, z, c2); } TH3D* h4 = new TH3D("t3D1-h4", "h4=c1*h1+c2*h2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h4->Add(h1, h2, c1, c2); bool ret = equals("Add3D1", h3, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testAdd3DProfile1() { // Tests the second Add method for 3D Profiles Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TProfile3D* p1 = new TProfile3D("t3D1-p1", "p1", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p2 = new TProfile3D("t3D1-p2", "p2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p3 = new TProfile3D("t3D1-p3", "p3=c1*p1+c2*p2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); p3->Fill(x, y, z, t, c1); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); p3->Fill(x, y, z, t, c2); } TProfile3D* p4 = new TProfile3D("t3D1-p4", "p4=c1*p1+c2*p2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); p4->Add(p1, p2, c1, c2); bool ret = equals("Add3DProfile1", p3, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testAdd3D2() { // Tests the second Add method for 3D Histograms Double_t c2 = r.Rndm(); TH3D* h1 = new TH3D("t3D2-h1", "h1", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("t3D2-h2", "h2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("t3D2-h3", "h3=h1+c2*h2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); h3->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h3->Fill(x, y, z, c2); } h1->Add(h2, c2); bool ret = equals("Add3D2", h3, h1, cmpOptStats, 1E-10); delete h2; delete h3; return ret; } bool testAdd3DProfile2() { // Tests the second Add method for 3D Profiles Double_t c2 = r.Rndm(); TProfile3D* p1 = new TProfile3D("t3D2-p1", "p1", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p2 = new TProfile3D("t3D2-p2", "p2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p3 = new TProfile3D("t3D2-p3", "p3=p1+c2*p2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); p3->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); p3->Fill(x, y, z, t, c2); } p1->Add(p2, c2); bool ret = equals("Add3DProfile2", p3, p1, cmpOptStats, 1E-10); delete p2; delete p3; return ret; } bool testAddSparse() { // Tests the Add method for Sparse Histograms Double_t c = r.Rndm(); Int_t bsize[] = { TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) )}; Double_t xmin[] = {minRange, minRange, minRange}; Double_t xmax[] = {maxRange, maxRange, maxRange}; THnSparseD* s1 = new THnSparseD("tS-s1", "s1", 3, bsize, xmin, xmax); THnSparseD* s2 = new THnSparseD("tS-s2", "s2", 3, bsize, xmin, xmax); THnSparseD* s3 = new THnSparseD("tS-s3", "s3=s1+c*s2", 3, bsize, xmin, xmax); s1->Sumw2();s2->Sumw2();s3->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[1] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[2] = r.Uniform( minRange * .9 , maxRange * 1.1 ); s1->Fill(points); s3->Fill(points); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[1] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[2] = r.Uniform( minRange * .9 , maxRange * 1.1 ); s2->Fill(points); s3->Fill(points, c); } s1->Add(s2, c); bool ret = equals("AddSparse", s3, s1, cmpOptStats , 1E-10); delete s2; delete s3; return ret; } bool testMul1() { // Tests the first Multiply method for 1D Histograms Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TH1D* h1 = new TH1D("m1D1-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("m1D1-h2", "h2-Title", numberOfBins, minRange, maxRange); TH1D* h3 = new TH1D("m1D1-h3", "h3=c1*h1*c2*h2", numberOfBins, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(value, 1.0); h3->Fill(value, c1*c2*h1->GetBinContent( h1->GetXaxis()->FindBin(value) ) ); } // h3 has to be filled again so that the erros are properly calculated r.SetSeed(seed); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(value, c1*c2*h2->GetBinContent( h2->GetXaxis()->FindBin(value) ) ); } // No the bin contents has to be reduced, as it was filled twice! for ( Int_t bin = 0; bin <= h3->GetNbinsX() + 1; ++bin ) { h3->SetBinContent(bin, h3->GetBinContent(bin) / 2 ); } TH1D* h4 = new TH1D("m1D1-h4", "h4=h1*h2", numberOfBins, minRange, maxRange); h4->Multiply(h1, h2, c1, c2); bool ret = equals("Multiply1D1", h3, h4, cmpOptStats, 1E-14); delete h1; delete h2; delete h3; return ret; } bool testMul2() { // Tests the second Multiply method for 1D Histograms TH1D* h1 = new TH1D("m1D2-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("m1D2-h2", "h2-Title", numberOfBins, minRange, maxRange); TH1D* h3 = new TH1D("m1D2-h3", "h3=h1*h2", numberOfBins, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(value, 1.0); h3->Fill(value, h1->GetBinContent( h1->GetXaxis()->FindBin(value) ) ); } r.SetSeed(seed); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(value, h2->GetBinContent( h2->GetXaxis()->FindBin(value) ) ); } for ( Int_t bin = 0; bin <= h3->GetNbinsX() + 1; ++bin ) { h3->SetBinContent(bin, h3->GetBinContent(bin) / 2 ); } h1->Multiply(h2); bool ret = equals("Multiply1D2", h3, h1, cmpOptStats, 1E-14); delete h2; delete h3; return ret; } bool testMul2D1() { // Tests the first Multiply method for 2D Histograms Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TH2D* h1 = new TH2D("m2D1-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("m2D1-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("m2D1-h3", "h3=c1*h1*c2*h2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h3->Fill(x, y, c1*c2*h1->GetBinContent( h1->GetXaxis()->FindBin(x), h1->GetYaxis()->FindBin(y) ) ); } // h3 has to be filled again so that the erros are properly calculated r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, c1*c2*h2->GetBinContent( h2->GetXaxis()->FindBin(x), h2->GetYaxis()->FindBin(y) ) ); } // No the bin contents has to be reduced, as it was filled twice! for ( Int_t i = 0; i <= h3->GetNbinsX() + 1; ++i ) { for ( Int_t j = 0; j <= h3->GetNbinsY() + 1; ++j ) { h3->SetBinContent(i, j, h3->GetBinContent(i, j) / 2 ); } } TH2D* h4 = new TH2D("m2D1-h4", "h4=h1*h2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h4->Multiply(h1, h2, c1, c2); bool ret = equals("Multiply2D1", h3, h4, cmpOptStats, 1E-12); delete h1; delete h2; delete h3; return ret; } bool testMul2D2() { // Tests the second Multiply method for 2D Histograms TH2D* h1 = new TH2D("m2D2-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("m2D2-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("m2D2-h3", "h3=h1*h2", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h3->Fill(x, y, h1->GetBinContent( h1->GetXaxis()->FindBin(x), h1->GetYaxis()->FindBin(y) ) ); } // h3 has to be filled again so that the erros are properly calculated r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, h2->GetBinContent( h2->GetXaxis()->FindBin(x), h2->GetYaxis()->FindBin(y) ) ); } // No the bin contents has to be reduced, as it was filled twice! for ( Int_t i = 0; i <= h3->GetNbinsX() + 1; ++i ) { for ( Int_t j = 0; j <= h3->GetNbinsY() + 1; ++j ) { h3->SetBinContent(i, j, h3->GetBinContent(i, j) / 2 ); } } h1->Multiply(h2); bool ret = equals("Multiply2D2", h3, h1, cmpOptStats, 1E-12); delete h2; delete h3; return ret; } bool testMul3D1() { // Tests the first Multiply method for 3D Histograms Double_t c1 = r.Rndm(); Double_t c2 = r.Rndm(); TH3D* h1 = new TH3D("m3D1-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("m3D1-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("m3D1-h3", "h3=c1*h1*c2*h2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h3->Fill(x, y, z, c1*c2*h1->GetBinContent( h1->GetXaxis()->FindBin(x), h1->GetYaxis()->FindBin(y), h1->GetZaxis()->FindBin(z) ) ); } // h3 has to be filled again so that the erros are properly calculated r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, z, c1*c2*h2->GetBinContent( h2->GetXaxis()->FindBin(x), h2->GetYaxis()->FindBin(y), h2->GetZaxis()->FindBin(z) ) ); } // No the bin contents has to be reduced, as it was filled twice! for ( Int_t i = 0; i <= h3->GetNbinsX() + 1; ++i ) { for ( Int_t j = 0; j <= h3->GetNbinsY() + 1; ++j ) { for ( Int_t h = 0; h <= h3->GetNbinsZ() + 1; ++h ) { h3->SetBinContent(i, j, h, h3->GetBinContent(i, j, h) / 2 ); } } } TH3D* h4 = new TH3D("m3D1-h4", "h4=h1*h2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h4->Multiply(h1, h2, c1, c2); bool ret = equals("Multiply3D1", h3, h4, cmpOptStats, 1E-13); delete h1; delete h2; delete h3; return ret; } bool testMul3D2() { // Tests the second Multiply method for 3D Histograms TH3D* h1 = new TH3D("m3D2-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("m3D2-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("m3D2-h3", "h3=h1*h2", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h3->Fill(x, y, z, h1->GetBinContent( h1->GetXaxis()->FindBin(x), h1->GetYaxis()->FindBin(y), h1->GetZaxis()->FindBin(z) ) ); } // h3 has to be filled again so that the errors are properly calculated r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, z, h2->GetBinContent( h2->GetXaxis()->FindBin(x), h2->GetYaxis()->FindBin(y), h2->GetZaxis()->FindBin(z) ) ); } // No the bin contents has to be reduced, as it was filled twice! for ( Int_t i = 0; i <= h3->GetNbinsX() + 1; ++i ) { for ( Int_t j = 0; j <= h3->GetNbinsY() + 1; ++j ) { for ( Int_t h = 0; h <= h3->GetNbinsZ() + 1; ++h ) { h3->SetBinContent(i, j, h, h3->GetBinContent(i, j, h) / 2 ); } } } h1->Multiply(h2); bool ret = equals("Multiply3D2", h3, h1, cmpOptStats, 1E-13); delete h2; delete h3; return ret; } bool testMulSparse() { // Tests the Multiply method for Sparse Histograms Int_t bsize[] = { TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) )}; Double_t xmin[] = {minRange, minRange, minRange}; Double_t xmax[] = {maxRange, maxRange, maxRange}; THnSparseD* s1 = new THnSparseD("m3D2-s1", "s1-Title", 3, bsize, xmin, xmax); THnSparseD* s2 = new THnSparseD("m3D2-s2", "s2-Title", 3, bsize, xmin, xmax); THnSparseD* s3 = new THnSparseD("m3D2-s3", "s3=s1*s2", 3, bsize, xmin, xmax); s1->Sumw2();s2->Sumw2();s3->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[1] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[2] = r.Uniform( minRange * .9 , maxRange * 1.1 ); s1->Fill(points, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[1] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[2] = r.Uniform( minRange * .9 , maxRange * 1.1 ); s2->Fill(points, 1.0); Int_t points_s1[3]; points_s1[0] = s1->GetAxis(0)->FindBin( points[0] ); points_s1[1] = s1->GetAxis(1)->FindBin( points[1] ); points_s1[2] = s1->GetAxis(2)->FindBin( points[2] ); s3->Fill(points, s1->GetBinContent( points_s1 ) ); } // s3 has to be filled again so that the errors are properly calculated r.SetSeed(seed); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[1] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[2] = r.Uniform( minRange * .9 , maxRange * 1.1 ); Int_t points_s2[3]; points_s2[0] = s2->GetAxis(0)->FindBin( points[0] ); points_s2[1] = s2->GetAxis(1)->FindBin( points[1] ); points_s2[2] = s2->GetAxis(2)->FindBin( points[2] ); s3->Fill(points, s2->GetBinContent( points_s2 ) ); } // No the bin contents has to be reduced, as it was filled twice! for ( Long64_t i = 0; i < s3->GetNbins(); ++i ) { Int_t bin[3]; Double_t v = s3->GetBinContent(i, bin); s3->SetBinContent( bin, v / 2 ); } s1->Multiply(s2); bool ret = equals("MultSparse", s3, s1, cmpOptNone, 1E-10); delete s2; delete s3; return ret; } bool testDivide1() { // Tests the first Divide method for 1D Histograms Double_t c1 = r.Rndm() + 1; Double_t c2 = r.Rndm() + 1; TH1D* h1 = new TH1D("d1D1-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("d1D1-h2", "h2-Title", numberOfBins, minRange, maxRange); h1->Sumw2();h2->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value; value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(value, 1.0); } TH1D* h3 = new TH1D("d1D1-h3", "h3=(c1*h1)/(c2*h2)", numberOfBins, minRange, maxRange); h3->Divide(h1, h2, c1, c2); TH1D* h4 = new TH1D("d1D1-h4", "h4=h3*h2)", numberOfBins, minRange, maxRange); h4->Multiply(h2, h3, c2/c1, 1); for ( Int_t bin = 0; bin <= h4->GetNbinsX() + 1; ++bin ) { Double_t error = h4->GetBinError(bin) * h4->GetBinError(bin); error -= (2*(c2*c2)/(c1*c1)) * h3->GetBinContent(bin)*h3->GetBinContent(bin)*h2->GetBinError(bin)*h2->GetBinError(bin); h4->SetBinError( bin, sqrt(error) ); } std::vector<double> stats(TH1::kNstat); h1->PutStats(&stats[0]); bool ret = equals("Divide1D1", h1, h4, cmpOptStats); delete h1; delete h2; delete h3; return ret; } bool testDivideProf1() { // Tests the first Divide method for 1D Profiles Double_t c1 = 1;//r.Rndm(); Double_t c2 = 1;//r.Rndm(); TProfile* p1 = new TProfile("d1D1-p1", "p1-Title", numberOfBins, minRange, maxRange); TProfile* p2 = new TProfile("d1D1-p2", "p2-Title", numberOfBins, minRange, maxRange); p1->Sumw2();p2->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x, y; x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); } TProfile* p3 = new TProfile("d1D1-p3", "p3=(c1*p1)/(c2*p2)", numberOfBins, minRange, maxRange); p3->Divide(p1, p2, c1, c2); // There is no Multiply method to tests. And the errors are wrongly // calculated in the TProfile::Division method, so there is no // point to make the tests. Once the method is fixed, the tests // will be finished. return 0; } bool testDivide2() { // Tests the second Divide method for 1D Histograms TH1D* h1 = new TH1D("d1D2-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("d1D2-h2", "h2-Title", numberOfBins, minRange, maxRange); h1->Sumw2();h2->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value; value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(value, 1.0); } TH1D* h3 = static_cast<TH1D*>( h1->Clone() ); h3->Divide(h2); TH1D* h4 = new TH1D("d1D2-h4", "h4=h3*h2)", numberOfBins, minRange, maxRange); h4->Multiply(h2, h3, 1.0, 1.0); for ( Int_t bin = 0; bin <= h4->GetNbinsX() + 1; ++bin ) { Double_t error = h4->GetBinError(bin) * h4->GetBinError(bin); error -= 2 * h3->GetBinContent(bin)*h3->GetBinContent(bin)*h2->GetBinError(bin)*h2->GetBinError(bin); h4->SetBinError( bin, sqrt(error) ); } std::vector<double> stats(TH1::kNstat); h1->PutStats(&stats[0]); bool ret = equals("Divide1D1", h1, h4, cmpOptStats); delete h1; delete h2; delete h3; return ret; } bool testDivide2D1() { // Tests the first Divide method for 2D Histograms Double_t c1 = r.Rndm() + 1; Double_t c2 = r.Rndm() + 1; TH2D* h1 = new TH2D("d2D1-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("d2D1-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents*nEvents; ++e ) { Double_t x,y; x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); } TH2D* h3 = new TH2D("d2D1-h3", "h3=(c1*h1)/(c2*h2)", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h3->Divide(h1, h2, c1, c2); TH2D* h4 = new TH2D("d2D1-h4", "h4=h3*h2)", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h4->Multiply(h2, h3, c2/c1, 1); for ( Int_t i = 0; i <= h4->GetNbinsX() + 1; ++i ) { for ( Int_t j = 0; j <= h4->GetNbinsY() + 1; ++j ) { Double_t error = h4->GetBinError(i,j) * h4->GetBinError(i,j); error -= (2*(c2*c2)/(c1*c1)) * h3->GetBinContent(i,j)*h3->GetBinContent(i,j)*h2->GetBinError(i,j)*h2->GetBinError(i,j); h4->SetBinError( i, j, sqrt(error) ); } } std::vector<double> stats(TH1::kNstat); h1->PutStats(&stats[0]); bool ret = equals("Divide2D1", h1, h4, cmpOptStats); delete h1; delete h2; delete h3; return ret; } bool testDivide2D2() { // Tests the second Divide method for 2D Histograms TH2D* h1 = new TH2D("d2D2-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("d2D2-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents*nEvents; ++e ) { Double_t x,y; x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); } TH2D* h3 = static_cast<TH2D*>( h1->Clone() ); h3->Divide(h2); TH2D* h4 = new TH2D("d2D2-h4", "h4=h3*h2)", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h4->Multiply(h2, h3, 1.0, 1.0); for ( Int_t i = 0; i <= h4->GetNbinsX() + 1; ++i ) { for ( Int_t j = 0; j <= h4->GetNbinsY() + 1; ++j ) { Double_t error = h4->GetBinError(i,j) * h4->GetBinError(i,j); error -= 2 * h3->GetBinContent(i,j)*h3->GetBinContent(i,j)*h2->GetBinError(i,j)*h2->GetBinError(i,j); h4->SetBinError( i, j, sqrt(error) ); } } std::vector<double> stats(TH1::kNstat); h1->PutStats(&stats[0]); bool ret = equals("Divide2D2", h1, h4, cmpOptStats); delete h1; delete h2; delete h3; return ret; } bool testDivide3D1() { // Tests the first Divide method for 3D Histograms Double_t c1 = r.Rndm() + 1; Double_t c2 = r.Rndm() + 1; TH3D* h1 = new TH3D("d3D1-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("d3D1-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents*nEvents; ++e ) { Double_t x,y,z; x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); } TH3D* h3 = new TH3D("d3D1-h3", "h3=(c1*h1)/(c2*h2)", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h3->Divide(h1, h2, c1, c2); TH3D* h4 = new TH3D("d3D1-h4", "h4=h3*h2)", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h4->Multiply(h2, h3, c2/c1, 1.0); for ( Int_t i = 0; i <= h4->GetNbinsX() + 1; ++i ) { for ( Int_t j = 0; j <= h4->GetNbinsY() + 1; ++j ) { for ( Int_t h = 0; h <= h4->GetNbinsZ() + 1; ++h ) { Double_t error = h4->GetBinError(i,j,h) * h4->GetBinError(i,j,h); //error -= 2 * h3->GetBinContent(i,j,h)*h3->GetBinContent(i,j,h)*h2->GetBinError(i,j,h)*h2->GetBinError(i,j,h); error -= (2*(c2*c2)/(c1*c1)) * h3->GetBinContent(i,j,h)*h3->GetBinContent(i,j,h)*h2->GetBinError(i,j,h)*h2->GetBinError(i,j,h); h4->SetBinError( i, j, h, sqrt(error) ); } } } std::vector<double> stats(TH1::kNstat); h1->PutStats(&stats[0]); bool ret = equals("Divide3D1", h1, h4, cmpOptStats); delete h1; delete h2; delete h3; return ret; } bool testDivide3D2() { // Tests the second Divide method for 3D Histograms TH3D* h1 = new TH3D("d3D2-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("d3D2-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2(); UInt_t seed = r.GetSeed(); // For possible problems r.SetSeed(seed); for ( Int_t e = 0; e < nEvents*nEvents; ++e ) { Double_t x,y,z; x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); x = r.Uniform(0.9 * minRange, 1.1 * maxRange); y = r.Uniform(0.9 * minRange, 1.1 * maxRange); z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); } TH3D* h3 = static_cast<TH3D*>( h1->Clone() ); h3->Divide(h2); TH3D* h4 = new TH3D("d3D2-h4", "h4=h3*h2)", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h4->Multiply(h2, h3, 1.0, 1.0); for ( Int_t i = 0; i <= h4->GetNbinsX() + 1; ++i ) { for ( Int_t j = 0; j <= h4->GetNbinsY() + 1; ++j ) { for ( Int_t h = 0; h <= h4->GetNbinsZ() + 1; ++h ) { Double_t error = h4->GetBinError(i,j,h) * h4->GetBinError(i,j,h); error -= 2 * h3->GetBinContent(i,j,h)*h3->GetBinContent(i,j,h)*h2->GetBinError(i,j,h)*h2->GetBinError(i,j,h); h4->SetBinError( i, j, h, sqrt(error) ); } } } std::vector<double> stats(TH1::kNstat); h1->PutStats(&stats[0]); bool ret = equals("Divide3D2", h1, h4, cmpOptStats); delete h1; delete h2; delete h3; return ret; } bool testAssign1D() { // Tests the operator=() method for 1D Histograms TH1D* h1 = new TH1D("=1D-h1", "h1-Title", numberOfBins, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); } TH1D* h2 = new TH1D("=1D-h2", "h2-Title", numberOfBins, minRange, maxRange); *h2 = *h1; bool ret = equals("Assign Oper Hist '=' 1D", h1, h2, cmpOptStats); delete h1; return ret; } bool testAssignProfile1D() { // Tests the operator=() method for 1D Profiles TProfile* p1 = new TProfile("=1D-p1", "p1-Title", numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); } TProfile* p2 = new TProfile("=1D-p2", "p2-Title", numberOfBins, minRange, maxRange); *p2 = *p1; bool ret = equals("Assign Oper Prof '=' 1D", p1, p2, cmpOptStats); delete p1; return ret; } bool testCopyConstructor1D() { // Tests the copy constructor for 1D Histograms TH1D* h1 = new TH1D("cc1D-h1", "h1-Title", numberOfBins, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); } TH1D* h2 = new TH1D(*h1); bool ret = equals("Copy Constructor Hist 1D", h1, h2, cmpOptStats); delete h1; return ret; } bool testCopyConstructorProfile1D() { // Tests the copy constructor for 1D Profiles TProfile* p1 = new TProfile("cc1D-p1", "p1-Title", numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); } TProfile* p2 = new TProfile(*p1); bool ret = equals("Copy Constructor Prof 1D", p1, p2, cmpOptStats); delete p1; return ret; } bool testClone1D() { // Tests the clone method for 1D Histograms TH1D* h1 = new TH1D("cl1D-h1", "h1-Title", numberOfBins, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); } TH1D* h2 = static_cast<TH1D*> ( h1->Clone() ); bool ret = equals("Clone Function Hist 1D", h1, h2, cmpOptStats); delete h1; return ret; } bool testCloneProfile1D() { // Tests the clone method for 1D Profiles TProfile* p1 = new TProfile("cl1D-p1", "p1-Title", numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); } TProfile* p2 = static_cast<TProfile*> ( p1->Clone() ); bool ret = equals("Clone Function Prof 1D", p1, p2, cmpOptStats); delete p1; return ret; } bool testAssign2D() { // Tests the operator=() method for 2D Histograms TH2D* h1 = new TH2D("=2D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); } TH2D* h2 = new TH2D("=2D-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); *h2 = *h1; bool ret = equals("Assign Oper Hist '=' 2D", h1, h2, cmpOptStats); delete h1; return ret; } bool testAssignProfile2D() { // Tests the operator=() method for 2D Profiles TProfile2D* p1 = new TProfile2D("=2D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); } TProfile2D* p2 = new TProfile2D("=2D-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); *p2 = *p1; bool ret = equals("Assign Oper Prof '=' 2D", p1, p2, cmpOptStats); delete p1; return ret; } bool testCopyConstructor2D() { // Tests the copy constructor for 2D Histograms TH2D* h1 = new TH2D("cc2D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); } TH2D* h2 = new TH2D(*h1); bool ret = equals("Copy Constructor Hist 2D", h1, h2, cmpOptStats); delete h1; return ret; } bool testCopyConstructorProfile2D() { // Tests the copy constructor for 2D Profiles TProfile2D* p1 = new TProfile2D("cc2D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); } TProfile2D* p2 = new TProfile2D(*p1); bool ret = equals("Copy Constructor Prof 2D", p1, p2, cmpOptStats); delete p1; return ret; } bool testClone2D() { // Tests the clone method for 2D Histograms TH2D* h1 = new TH2D("cl2D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); } TH2D* h2 = static_cast<TH2D*> ( h1->Clone() ); bool ret = equals("Clone Function Hist 2D", h1, h2, cmpOptStats); delete h1; return ret; } bool testCloneProfile2D() { // Tests the clone method for 2D Profiles TProfile2D* p1 = new TProfile2D("cl2D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); } TProfile2D* p2 = static_cast<TProfile2D*> ( p1->Clone() ); bool ret = equals("Clone Function Prof 2D", p1, p2, cmpOptStats); delete p1; return ret; } bool testAssign3D() { // Tests the operator=() method for 3D Histograms TH3D* h1 = new TH3D("=3D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); } TH3D* h2 = new TH3D("=3D-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); *h2 = *h1; bool ret = equals("Assign Oper Hist '=' 3D", h1, h2, cmpOptStats); delete h1; return ret; } bool testAssignProfile3D() { // Tests the operator=() method for 3D Profiles TProfile3D* p1 = new TProfile3D("=3D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); } TProfile3D* p2 = new TProfile3D("=3D-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); *p2 = *p1; bool ret = equals("Assign Oper Prof '=' 3D", p1, p2); delete p1; return ret; } bool testCopyConstructor3D() { // Tests the copy constructor for 3D Histograms TH3D* h1 = new TH3D("cc3D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); } TH3D* h2 = new TH3D(*h1); bool ret = equals("Copy Constructor Hist 3D", h1, h2, cmpOptStats); delete h1; return ret; } bool testCopyConstructorProfile3D() { // Tests the copy constructor for 3D Profiles TProfile3D* p1 = new TProfile3D("cc3D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); } TProfile3D* p2 = new TProfile3D(*p1); bool ret = equals("Copy Constructor Prof 3D", p1, p2/*, cmpOptStats*/); delete p1; return ret; } bool testClone3D() { // Tests the clone method for 3D Histograms TH3D* h1 = new TH3D("cl3D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); } TH3D* h2 = static_cast<TH3D*> ( h1->Clone() ); bool ret = equals("Clone Function Hist 3D", h1, h2, cmpOptStats); delete h1; return ret; } bool testCloneProfile3D() { // Tests the clone method for 3D Profiles TProfile3D* p1 = new TProfile3D("cl3D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); } TProfile3D* p2 = static_cast<TProfile3D*> ( p1->Clone() ); bool ret = equals("Clone Function Prof 3D", p1, p2); delete p1; return ret; } bool testCloneSparse() { // Tests the clone method for Sparse histograms Int_t bsize[] = { TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ) }; Double_t xmin[] = {minRange, minRange, minRange}; Double_t xmax[] = {maxRange, maxRange, maxRange}; THnSparseD* s1 = new THnSparseD("clS-s1","s1-Title", 3, bsize, xmin, xmax); for ( Int_t i = 0; i < nEvents * nEvents; ++i ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9, maxRange * 1.1); points[1] = r.Uniform( minRange * .9, maxRange * 1.1); points[2] = r.Uniform( minRange * .9, maxRange * 1.1); s1->Fill(points); } THnSparseD* s2 = (THnSparseD*) s1->Clone(); bool ret = equals("Clone Function THnSparse", s1, s2); delete s1; return ret; } bool testWriteRead1D() { // Tests the write and read methods for 1D Histograms TH1D* h1 = new TH1D("wr1D-h1", "h1-Title", numberOfBins, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); } TFile f("tmpHist.root", "RECREATE"); h1->Write(); f.Close(); TFile f2("tmpHist.root"); TH1D* h2 = static_cast<TH1D*> ( f2.Get("wr1D-h1") ); bool ret = equals("Read/Write Hist 1D", h1, h2, cmpOptStats); delete h1; return ret; } bool testWriteReadProfile1D() { // Tests the write and read methods for 1D Profiles TProfile* p1 = new TProfile("wr1D-p1", "p1-Title", numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); } TFile f("tmpHist.root", "RECREATE"); p1->Write(); f.Close(); TFile f2("tmpHist.root"); TProfile* p2 = static_cast<TProfile*> ( f2.Get("wr1D-p1") ); bool ret = equals("Read/Write Prof 1D", p1, p2, cmpOptStats); delete p1; return ret; } bool testWriteRead2D() { // Tests the write and read methods for 2D Histograms TH2D* h1 = new TH2D("wr2D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); } TFile f("tmpHist.root", "RECREATE"); h1->Write(); f.Close(); TFile f2("tmpHist.root"); TH2D* h2 = static_cast<TH2D*> ( f2.Get("wr2D-h1") ); bool ret = equals("Read/Write Hist 2D", h1, h2, cmpOptStats); delete h1; return ret; } bool testWriteReadProfile2D() { // Tests the write and read methods for 2D Profiles TProfile2D* p1 = new TProfile2D("wr2D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); } TFile f("tmpHist.root", "RECREATE"); p1->Write(); f.Close(); TFile f2("tmpHist.root"); TProfile2D* p2 = static_cast<TProfile2D*> ( f2.Get("wr2D-p1") ); bool ret = equals("Read/Write Prof 2D", p1, p2, cmpOptStats); delete p1; return ret; } bool testWriteRead3D() { // Tests the write and read methods for 3D Histograms TH3D* h1 = new TH3D("wr3D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); } TFile f("tmpHist.root", "RECREATE"); h1->Write(); f.Close(); TFile f2("tmpHist.root"); TH3D* h2 = static_cast<TH3D*> ( f2.Get("wr3D-h1") ); bool ret = equals("Read/Write Hist 3D", h1, h2, cmpOptStats); delete h1; return ret; } bool testWriteReadProfile3D() { // Tests the write and read methods for 3D Profile TProfile3D* p1 = new TProfile3D("wr3D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); } TFile f("tmpHist.root", "RECREATE"); p1->Write(); f.Close(); TFile f2("tmpHist.root"); TProfile3D* p2 = static_cast<TProfile3D*> ( f2.Get("wr3D-p1") ); // In this particular case the statistics are not checked. The // Chi2Test is not properly implemented for the TProfile3D // class. If the cmpOptStats flag is set, then there will be a // crash. bool ret = equals("Read/Write Prof 3D", p1, p2); delete p1; return ret; } bool testWriteReadSparse() { // Tests the write and read methods for Sparse Histograms Int_t bsize[] = { TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ) }; Double_t xmin[] = {minRange, minRange, minRange}; Double_t xmax[] = {maxRange, maxRange, maxRange}; THnSparseD* s1 = new THnSparseD("wrS-s1","s1-Title", 3, bsize, xmin, xmax); s1->Sumw2(); for ( Int_t i = 0; i < nEvents * nEvents; ++i ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9, maxRange * 1.1); points[1] = r.Uniform( minRange * .9, maxRange * 1.1); points[2] = r.Uniform( minRange * .9, maxRange * 1.1); s1->Fill(points); } TFile f("tmpHist.root", "RECREATE"); s1->Write(); f.Close(); TFile f2("tmpHist.root"); THnSparseD* s2 = static_cast<THnSparseD*> ( f2.Get("wrS-s1") ); bool ret = equals("Read/Write Hist 3D", s1, s2, cmpOptNone); delete s1; return ret; } bool testMerge1D() { // Tests the merge method for 1D Histograms TH1D* h1 = new TH1D("merge1D-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("merge1D-h2", "h2-Title", numberOfBins, minRange, maxRange); TH1D* h3 = new TH1D("merge1D-h3", "h3-Title", numberOfBins, minRange, maxRange); TH1D* h4 = new TH1D("merge1D-h4", "h4-Title", numberOfBins, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); h4->Fill(value, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(value, 1.0); h4->Fill(value, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(value, 1.0); h4->Fill(value, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("Merge1D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMergeProf1D() { // Tests the merge method for 1D Profiles TProfile* p1 = new TProfile("merge1D-p1", "p1-Title", numberOfBins, minRange, maxRange); TProfile* p2 = new TProfile("merge1D-p2", "p2-Title", numberOfBins, minRange, maxRange); TProfile* p3 = new TProfile("merge1D-p3", "p3-Title", numberOfBins, minRange, maxRange); TProfile* p4 = new TProfile("merge1D-p4", "p4-Title", numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("Merge1DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMerge2D() { // Tests the merge method for 2D Histograms TH2D* h1 = new TH2D("merge2D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("merge2D-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("merge2D-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h4 = new TH2D("merge2D-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("Merge2D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMergeProf2D() { // Tests the merge method for 2D Profiles TProfile2D* p1 = new TProfile2D("merge2D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p2 = new TProfile2D("merge2D-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p3 = new TProfile2D("merge2D-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p4 = new TProfile2D("merge2D-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("Merge2DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMerge3D() { // Tests the merge method for 3D Histograms TH3D* h1 = new TH3D("merge3D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("merge3D-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("merge3D-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h4 = new TH3D("merge3D-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->Sumw2();h2->Sumw2();h3->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("Merge3D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMergeProf3D() { // Tests the merge method for 3D Profiles TProfile3D* p1 = new TProfile3D("merge3D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p2 = new TProfile3D("merge3D-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p3 = new TProfile3D("merge3D-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p4 = new TProfile3D("merge3D-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("Merge3DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeSparse() { // Tests the merge method for Sparse Histograms Int_t bsize[] = { TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ) }; Double_t xmin[] = {minRange, minRange, minRange}; Double_t xmax[] = {maxRange, maxRange, maxRange}; THnSparseD* s1 = new THnSparseD("mergeS-s1", "s1-Title", 3, bsize, xmin, xmax); THnSparseD* s2 = new THnSparseD("mergeS-s2", "s2-Title", 3, bsize, xmin, xmax); THnSparseD* s3 = new THnSparseD("mergeS-s3", "s3-Title", 3, bsize, xmin, xmax); THnSparseD* s4 = new THnSparseD("mergeS-s4", "s4-Title", 3, bsize, xmin, xmax); s1->Sumw2();s2->Sumw2();s3->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9, maxRange * 1.1); points[1] = r.Uniform( minRange * .9, maxRange * 1.1); points[2] = r.Uniform( minRange * .9, maxRange * 1.1); s1->Fill(points, 1.0); s4->Fill(points, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9, maxRange * 1.1); points[1] = r.Uniform( minRange * .9, maxRange * 1.1); points[2] = r.Uniform( minRange * .9, maxRange * 1.1); s2->Fill(points, 1.0); s4->Fill(points, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9, maxRange * 1.1); points[1] = r.Uniform( minRange * .9, maxRange * 1.1); points[2] = r.Uniform( minRange * .9, maxRange * 1.1); s3->Fill(points, 1.0); s4->Fill(points, 1.0); } TList *list = new TList; list->Add(s2); list->Add(s3); s1->Merge(list); bool ret = equals("MergeSparse", s1, s4, cmpOptNone, 1E-10); delete s1; delete s2; delete s3; return ret; } bool testMerge1DLabelSame() { // Tests the merge with some equal labels method for 1D Histograms TH1D* h1 = new TH1D("merge1DLabelSame-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("merge1DLabelSame-h2", "h2-Title", numberOfBins, minRange, maxRange); TH1D* h3 = new TH1D("merge1DLabelSame-h3", "h3-Title", numberOfBins, minRange, maxRange); TH1D* h4 = new TH1D("merge1DLabelSame-h4", "h4-Title", numberOfBins, minRange, maxRange); h1->GetXaxis()->SetBinLabel(4, "alpha"); h2->GetXaxis()->SetBinLabel(4, "alpha"); h3->GetXaxis()->SetBinLabel(4, "alpha"); h4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, 1.0); h4->Fill(x, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, 1.0); h4->Fill(x, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, 1.0); h4->Fill(x, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelSame1D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge2DLabelSame() { // Tests the merge with some equal labels method for 2D Histograms TH2D* h1 = new TH2D("merge2DLabelSame-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("merge2DLabelSame-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("merge2DLabelSame-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h4 = new TH2D("merge2DLabelSame-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->GetXaxis()->SetBinLabel(4, "alpha"); h2->GetXaxis()->SetBinLabel(4, "alpha"); h3->GetXaxis()->SetBinLabel(4, "alpha"); h4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelSame2D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge3DLabelSame() { // Tests the merge with some equal labels method for 3D Histograms TH3D* h1 = new TH3D("merge3DLabelSame-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("merge3DLabelSame-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("merge3DLabelSame-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h4 = new TH3D("merge3DLabelSame-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->GetXaxis()->SetBinLabel(4, "alpha"); h2->GetXaxis()->SetBinLabel(4, "alpha"); h3->GetXaxis()->SetBinLabel(4, "alpha"); h4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelSame3D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMergeProf1DLabelSame() { // Tests the merge with some equal labels method for 1D Profiles TProfile* p1 = new TProfile("merge1DLabelSame-p1", "p1-Title", numberOfBins, minRange, maxRange); TProfile* p2 = new TProfile("merge1DLabelSame-p2", "p2-Title", numberOfBins, minRange, maxRange); TProfile* p3 = new TProfile("merge1DLabelSame-p3", "p3-Title", numberOfBins, minRange, maxRange); TProfile* p4 = new TProfile("merge1DLabelSame-p4", "p4-Title", numberOfBins, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() p1->GetXaxis()->SetBinLabel(4, "alpha"); p2->GetXaxis()->SetBinLabel(6, "alpha"); p3->GetXaxis()->SetBinLabel(8, "alpha"); p4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelSame1DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf2DLabelSame() { // Tests the merge with some equal labels method for 2D Profiles TProfile2D* p1 = new TProfile2D("merge2DLabelSame-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p2 = new TProfile2D("merge2DLabelSame-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p3 = new TProfile2D("merge2DLabelSame-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p4 = new TProfile2D("merge2DLabelSame-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() p1->GetXaxis()->SetBinLabel(4, "alpha"); p2->GetXaxis()->SetBinLabel(6, "alpha"); p3->GetXaxis()->SetBinLabel(8, "alpha"); p4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelSame2DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf3DLabelSame() { // Tests the merge with some equal labels method for 3D Profiles TProfile3D* p1 = new TProfile3D("merge3DLabelSame-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p2 = new TProfile3D("merge3DLabelSame-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p3 = new TProfile3D("merge3DLabelSame-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p4 = new TProfile3D("merge3DLabelSame-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() p1->GetXaxis()->SetBinLabel(4, "alpha"); p2->GetXaxis()->SetBinLabel(6, "alpha"); p3->GetXaxis()->SetBinLabel(8, "alpha"); p4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelSame3DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMerge1DLabelDiff() { // Tests the merge with some different labels method for 1D Histograms // This test fails, as expected! That is why it is not run in the tests suite. TH1D* h1 = new TH1D("merge1DLabelDiff-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("merge1DLabelDiff-h2", "h2-Title", numberOfBins, minRange, maxRange); TH1D* h3 = new TH1D("merge1DLabelDiff-h3", "h3-Title", numberOfBins, minRange, maxRange); TH1D* h4 = new TH1D("merge1DLabelDiff-h4", "h4-Title", numberOfBins, minRange, maxRange); h1->GetXaxis()->SetBinLabel(2, "gamma"); h2->GetXaxis()->SetBinLabel(6, "beta"); h3->GetXaxis()->SetBinLabel(4, "alpha"); h4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, 1.0); h4->Fill(x, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, 1.0); h4->Fill(x, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, 1.0); h4->Fill(x, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelDiff1D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge2DLabelDiff() { // Tests the merge with some different labels method for 2D Histograms // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() TH2D* h1 = new TH2D("merge2DLabelDiff-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("merge2DLabelDiff-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("merge2DLabelDiff-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h4 = new TH2D("merge2DLabelDiff-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->GetXaxis()->SetBinLabel(2, "gamma"); h2->GetXaxis()->SetBinLabel(6, "beta"); h3->GetXaxis()->SetBinLabel(4, "alpha"); h4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelDiff2D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge3DLabelDiff() { // Tests the merge with some different labels method for 3D Histograms // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() TH3D* h1 = new TH3D("merge3DLabelDiff-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("merge3DLabelDiff-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("merge3DLabelDiff-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h4 = new TH3D("merge3DLabelDiff-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); h1->GetXaxis()->SetBinLabel(2, "gamma"); h2->GetXaxis()->SetBinLabel(6, "beta"); h3->GetXaxis()->SetBinLabel(4, "alpha"); h4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelDiff3D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMergeProf1DLabelDiff() { // Tests the merge with some different labels method for 1D Profiles TProfile* p1 = new TProfile("merge1DLabelDiff-p1", "p1-Title", numberOfBins, minRange, maxRange); TProfile* p2 = new TProfile("merge1DLabelDiff-p2", "p2-Title", numberOfBins, minRange, maxRange); TProfile* p3 = new TProfile("merge1DLabelDiff-p3", "p3-Title", numberOfBins, minRange, maxRange); TProfile* p4 = new TProfile("merge1DLabelDiff-p4", "p4-Title", numberOfBins, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() p1->GetXaxis()->SetBinLabel(2, "gamma"); p2->GetXaxis()->SetBinLabel(6, "beta"); p3->GetXaxis()->SetBinLabel(4, "alpha"); p4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelDiff1DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf2DLabelDiff() { // Tests the merge with some different labels method for 2D Profiles TProfile2D* p1 = new TProfile2D("merge2DLabelDiff-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p2 = new TProfile2D("merge2DLabelDiff-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p3 = new TProfile2D("merge2DLabelDiff-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p4 = new TProfile2D("merge2DLabelDiff-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() p1->GetXaxis()->SetBinLabel(2, "gamma"); p2->GetXaxis()->SetBinLabel(6, "beta"); p3->GetXaxis()->SetBinLabel(4, "alpha"); p4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelDiff2DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf3DLabelDiff() { // Tests the merge with some different labels method for 3D Profiles TProfile3D* p1 = new TProfile3D("merge3DLabelDiff-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p2 = new TProfile3D("merge3DLabelDiff-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p3 = new TProfile3D("merge3DLabelDiff-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p4 = new TProfile3D("merge3DLabelDiff-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() p1->GetXaxis()->SetBinLabel(2, "gamma"); p2->GetXaxis()->SetBinLabel(6, "beta"); p3->GetXaxis()->SetBinLabel(4, "alpha"); p4->GetXaxis()->SetBinLabel(4, "alpha"); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelDiff3DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMerge1DLabelAll() { // Tests the merge method with fully equally labelled 1D Histograms TH1D* h1 = new TH1D("merge1DLabelAll-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("merge1DLabelAll-h2", "h2-Title", numberOfBins, minRange, maxRange); TH1D* h3 = new TH1D("merge1DLabelAll-h3", "h3-Title", numberOfBins, minRange, maxRange); TH1D* h4 = new TH1D("merge1DLabelAll-h4", "h4-Title", numberOfBins, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); h1->GetXaxis()->SetBinLabel(i, name.str().c_str()); h2->GetXaxis()->SetBinLabel(i, name.str().c_str()); h3->GetXaxis()->SetBinLabel(i, name.str().c_str()); h4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, 1.0); h4->Fill(x, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, 1.0); h4->Fill(x, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, 1.0); h4->Fill(x, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelAll1D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge2DLabelAll() { // Tests the merge method with fully equally labelled 2D Histograms TH2D* h1 = new TH2D("merge2DLabelAll-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("merge2DLabelAll-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("merge2DLabelAll-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h4 = new TH2D("merge2DLabelAll-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); h1->GetXaxis()->SetBinLabel(i, name.str().c_str()); h2->GetXaxis()->SetBinLabel(i, name.str().c_str()); h3->GetXaxis()->SetBinLabel(i, name.str().c_str()); h4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelAll2D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge3DLabelAll() { // Tests the merge method with fully equally labelled 3D Histograms TH3D* h1 = new TH3D("merge3DLabelAll-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("merge3DLabelAll-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("merge3DLabelAll-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h4 = new TH3D("merge3DLabelAll-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); h1->GetXaxis()->SetBinLabel(i, name.str().c_str()); h2->GetXaxis()->SetBinLabel(i, name.str().c_str()); h3->GetXaxis()->SetBinLabel(i, name.str().c_str()); h4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelAll3D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMergeProf1DLabelAll() { // Tests the merge method with fully equally labelled 1D Profiles TProfile* p1 = new TProfile("merge1DLabelAll-p1", "p1-Title", numberOfBins, minRange, maxRange); TProfile* p2 = new TProfile("merge1DLabelAll-p2", "p2-Title", numberOfBins, minRange, maxRange); TProfile* p3 = new TProfile("merge1DLabelAll-p3", "p3-Title", numberOfBins, minRange, maxRange); TProfile* p4 = new TProfile("merge1DLabelAll-p4", "p4-Title", numberOfBins, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); p1->GetXaxis()->SetBinLabel(i, name.str().c_str()); p2->GetXaxis()->SetBinLabel(i, name.str().c_str()); p3->GetXaxis()->SetBinLabel(i, name.str().c_str()); p4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelAll1DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf2DLabelAll() { // Tests the merge method with fully equally labelled 2D Profiles TProfile2D* p1 = new TProfile2D("merge2DLabelAll-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p2 = new TProfile2D("merge2DLabelAll-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p3 = new TProfile2D("merge2DLabelAll-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p4 = new TProfile2D("merge2DLabelAll-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); p1->GetXaxis()->SetBinLabel(i, name.str().c_str()); p2->GetXaxis()->SetBinLabel(i, name.str().c_str()); p3->GetXaxis()->SetBinLabel(i, name.str().c_str()); p4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelAll2DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf3DLabelAll() { // Tests the merge method with fully equally labelled 3D Profiles TProfile3D* p1 = new TProfile3D("merge3DLabelAll-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p2 = new TProfile3D("merge3DLabelAll-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p3 = new TProfile3D("merge3DLabelAll-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p4 = new TProfile3D("merge3DLabelAll-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); p1->GetXaxis()->SetBinLabel(i, name.str().c_str()); p2->GetXaxis()->SetBinLabel(i, name.str().c_str()); p3->GetXaxis()->SetBinLabel(i, name.str().c_str()); p4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelAll3DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMerge1DLabelAllDiff() { // Tests the merge method with fully differently labelled 1D Histograms // This test fails, as expected! That is why it is not run in the tests suite. TH1D* h1 = new TH1D("merge1DLabelAllDiff-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("merge1DLabelAllDiff-h2", "h2-Title", numberOfBins, minRange, maxRange); TH1D* h3 = new TH1D("merge1DLabelAllDiff-h3", "h3-Title", numberOfBins, minRange, maxRange); TH1D* h4 = new TH1D("merge1DLabelAllDiff-h4", "h4-Title", numberOfBins, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); h1->GetXaxis()->SetBinLabel(i, name.str().c_str()); name << 1; h2->GetXaxis()->SetBinLabel(i, name.str().c_str()); name << 2; h3->GetXaxis()->SetBinLabel(i, name.str().c_str()); name << 3; h4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, 1.0); h4->Fill(x, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, 1.0); h4->Fill(x, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, 1.0); h4->Fill(x, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelAllDiff1D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge2DLabelAllDiff() { // Tests the merge method with fully differently labelled 2D Histograms // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() TH2D* h1 = new TH2D("merge2DLabelAllDiff-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h2 = new TH2D("merge2DLabelAllDiff-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h3 = new TH2D("merge2DLabelAllDiff-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH2D* h4 = new TH2D("merge2DLabelAllDiff-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); h1->GetXaxis()->SetBinLabel(i, name.str().c_str()); h1->GetYaxis()->SetBinLabel(i, name.str().c_str()); name << 1; h2->GetXaxis()->SetBinLabel(i, name.str().c_str()); h2->GetYaxis()->SetBinLabel(i, name.str().c_str()); name << 2; h3->GetXaxis()->SetBinLabel(i, name.str().c_str()); h3->GetYaxis()->SetBinLabel(i, name.str().c_str()); name << 3; h4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelAllDiff2D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge3DLabelAllDiff() { // Tests the merge method with fully differently labelled 3D Histograms // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() TH3D* h1 = new TH3D("merge3DLabelAllDiff-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h2 = new TH3D("merge3DLabelAllDiff-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h3 = new TH3D("merge3DLabelAllDiff-h3", "h3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TH3D* h4 = new TH3D("merge3DLabelAllDiff-h4", "h4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); h1->GetXaxis()->SetBinLabel(i, name.str().c_str()); h1->GetYaxis()->SetBinLabel(i, name.str().c_str()); h1->GetZaxis()->SetBinLabel(i, name.str().c_str()); name << 1; h2->GetXaxis()->SetBinLabel(i, name.str().c_str()); h2->GetYaxis()->SetBinLabel(i, name.str().c_str()); h2->GetZaxis()->SetBinLabel(i, name.str().c_str()); name << 2; h3->GetXaxis()->SetBinLabel(i, name.str().c_str()); h3->GetYaxis()->SetBinLabel(i, name.str().c_str()); h3->GetZaxis()->SetBinLabel(i, name.str().c_str()); name << 3; h4->GetXaxis()->SetBinLabel(i, name.str().c_str()); h4->GetYaxis()->SetBinLabel(i, name.str().c_str()); h4->GetZaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h3->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeLabelAllDiff3D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMergeProf1DLabelAllDiff() { // Tests the merge method with fully differently labelled 1D Profiles TProfile* p1 = new TProfile("merge1DLabelAllDiff-p1", "p1-Title", numberOfBins, minRange, maxRange); TProfile* p2 = new TProfile("merge1DLabelAllDiff-p2", "p2-Title", numberOfBins, minRange, maxRange); TProfile* p3 = new TProfile("merge1DLabelAllDiff-p3", "p3-Title", numberOfBins, minRange, maxRange); TProfile* p4 = new TProfile("merge1DLabelAllDiff-p4", "p4-Title", numberOfBins, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); p1->GetXaxis()->SetBinLabel(i, name.str().c_str()); name << 1; p2->GetXaxis()->SetBinLabel(i, name.str().c_str()); name << 2; p3->GetXaxis()->SetBinLabel(i, name.str().c_str()); name << 3; p4->GetXaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelAllDiff1DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf2DLabelAllDiff() { // Tests the merge method with fully differently labelled 2D Profiles TProfile2D* p1 = new TProfile2D("merge2DLabelAllDiff-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p2 = new TProfile2D("merge2DLabelAllDiff-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p3 = new TProfile2D("merge2DLabelAllDiff-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile2D* p4 = new TProfile2D("merge2DLabelAllDiff-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 2, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); p1->GetXaxis()->SetBinLabel(i, name.str().c_str()); p1->GetYaxis()->SetBinLabel(i, name.str().c_str()); name << 1; p2->GetXaxis()->SetBinLabel(i, name.str().c_str()); p2->GetYaxis()->SetBinLabel(i, name.str().c_str()); name << 2; p3->GetXaxis()->SetBinLabel(i, name.str().c_str()); p3->GetYaxis()->SetBinLabel(i, name.str().c_str()); name << 3; p4->GetXaxis()->SetBinLabel(i, name.str().c_str()); p4->GetYaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelAllDiff2DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf3DLabelAllDiff() { // Tests the merge method with fully differently labelled 3D Profiles TProfile3D* p1 = new TProfile3D("merge3DLabelAllDiff-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p2 = new TProfile3D("merge3DLabelAllDiff-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p3 = new TProfile3D("merge3DLabelAllDiff-p3", "p3-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); TProfile3D* p4 = new TProfile3D("merge3DLabelAllDiff-p4", "p4-Title", numberOfBins, minRange, maxRange, numberOfBins + 1, minRange, maxRange, numberOfBins + 2, minRange, maxRange); // It does not work properly! Look, the bins with the same labels // are different ones and still the tests passes! This is not // consistent with TH1::Merge() for ( Int_t i = 1; i <= numberOfBins; ++ i) { ostringstream name; name << (char) ((int) 'a' + i - 1); p1->GetXaxis()->SetBinLabel(i, name.str().c_str()); p1->GetYaxis()->SetBinLabel(i, name.str().c_str()); p1->GetZaxis()->SetBinLabel(i, name.str().c_str()); name << 1; p2->GetXaxis()->SetBinLabel(i, name.str().c_str()); p2->GetYaxis()->SetBinLabel(i, name.str().c_str()); p2->GetZaxis()->SetBinLabel(i, name.str().c_str()); name << 2; p3->GetXaxis()->SetBinLabel(i, name.str().c_str()); p3->GetYaxis()->SetBinLabel(i, name.str().c_str()); p3->GetZaxis()->SetBinLabel(i, name.str().c_str()); name << 3; p4->GetXaxis()->SetBinLabel(i, name.str().c_str()); p4->GetYaxis()->SetBinLabel(i, name.str().c_str()); p4->GetZaxis()->SetBinLabel(i, name.str().c_str()); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeLabelAllDiff3DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMerge1DDiff() { // Tests the merge method with different binned 1D Histograms TH1D *h1 = new TH1D("merge1DDiff-h1","h1-Title",110,-110,0); TH1D *h2 = new TH1D("merge1DDiff-h2","h2-Title",220,0,110); TH1D *h3 = new TH1D("merge1DDiff-h3","h3-Title",330,-55,55); TH1D *h4 = new TH1D("merge1DDiff-h4","h4-Title",220,-110,110); h1->Sumw2();h2->Sumw2();h3->Sumw2();h4->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Gaus(-55,10); h1->Fill(value, 1.0); h4->Fill(value, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Gaus(55,10); h2->Fill(value, 1.0); h4->Fill(value, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Gaus(0,10); h3->Fill(value, 1.0); h4->Fill(value, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeDiff1D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge2DDiff() { // Tests the merge method with different binned 2D Histograms TH2D *h1 = new TH2D("merge2DDiff-h1","h1-Title", 110,-110,0, 110,-110,0); TH2D *h2 = new TH2D("merge2DDiff-h2","h2-Title", 220,0,110, 220,0,110); TH2D *h3 = new TH2D("merge2DDiff-h3","h3-Title", 330,-55,55, 330,-55,55); TH2D *h4 = new TH2D("merge2DDiff-h4","h4-Title", 220,-110,110, 220,-110,110); h1->Sumw2();h2->Sumw2();h3->Sumw2();h4->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(-55,10); Double_t y = r.Gaus(-55,10); h1->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(55,10); Double_t y = r.Gaus(55,10); h2->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(0,10); Double_t y = r.Gaus(0,10); h3->Fill(x, y, 1.0); h4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeDiff2D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMerge3DDiff() { // Tests the merge method with different binned 3D Histograms // This tests fails! It should not! TH3D *h1 = new TH3D("merge3DDiff-h1","h1-Title", 110,-110,0, 110,-110,0, 110,-110,0); TH3D *h2 = new TH3D("merge3DDiff-h2","h2-Title", 220,0,110, 220,0,110, 220,0,110); TH3D *h3 = new TH3D("merge3DDiff-h3","h3-Title", 330,-55,55, 330,-55,55, 330,-55,55); TH3D *h4 = new TH3D("merge3DDiff-h4","h4-Title", 220,-110,110, 220,-110,110, 220,-110,110); h1->Sumw2();h2->Sumw2();h3->Sumw2();h4->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Gaus(-55,10); Double_t y = r.Gaus(-55,10); Double_t z = r.Gaus(-55,10); h1->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Gaus(55,10); Double_t y = r.Gaus(55,10); Double_t z = r.Gaus(55,10); h2->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Gaus(0,10); Double_t y = r.Gaus(55,10); Double_t z = r.Gaus(0,10); h3->Fill(x, y, z, 1.0); h4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(h2); list->Add(h3); h1->Merge(list); bool ret = equals("MergeDiff3D", h1, h4, cmpOptStats, 1E-10); delete h1; delete h2; delete h3; return ret; } bool testMergeProf1DDiff() { // Tests the merge method with different binned 1D Profile // Stats fail, for a reason I do not know :S TProfile *p1 = new TProfile("merge1DDiff-p1","p1-Title",110,-110,0); TProfile *p2 = new TProfile("merge1DDiff-p2","p2-Title",220,0,110); TProfile *p3 = new TProfile("merge1DDiff-p3","p3-Title",330,-55,55); TProfile *p4 = new TProfile("merge1DDiff-p4","p4-Title",220,-110,110); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(-55,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(55,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(0,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, 1.0); p4->Fill(x, y, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeDiff1DProf", p1, p4, cmpOptNone , 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf2DDiff() { // Tests the merge method with different binned 2D Profile // This tests fails! It should not! TProfile2D *p1 = new TProfile2D("merge2DDiff-p1","p1-Title", 110,-110,0, 110,-110,0); TProfile2D *p2 = new TProfile2D("merge2DDiff-p2","p2-Title", 220,0,110, 220,0,110); TProfile2D *p3 = new TProfile2D("merge2DDiff-p3","p3-Title", 330,-55,55, 330,-55,55); TProfile2D *p4 = new TProfile2D("merge2DDiff-p4","p4-Title", 220,-110,110, 220,-110,110); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(-55,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(55,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(0,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, 1.0); p4->Fill(x, y, z, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeDiff2DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testMergeProf3DDiff() { // Tests the merge method with different binned 3D Profile // This tests fails! Segmentation Fault!!It should not! TProfile3D *p1 = new TProfile3D("merge3DDiff-p1","p1-Title", 110,-110,0, 110,-110,0, 110,-110,0); TProfile3D *p2 = new TProfile3D("merge3DDiff-p2","p2-Title", 220,0,110, 220,0,110, 220,0,110); TProfile3D *p3 = new TProfile3D("merge3DDiff-p3","p3-Title", 330,-55,55, 330,-55,55, 330,-55,55); TProfile3D *p4 = new TProfile3D("merge3DDiff-p4","p4-Title", 220,-110,110, 220,-110,110, 220,-110,110); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(-55,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(55,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Gaus(0,10); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p3->Fill(x, y, z, t, 1.0); p4->Fill(x, y, z, t, 1.0); } TList *list = new TList; list->Add(p2); list->Add(p3); p1->Merge(list); bool ret = equals("MergeDiff3DProf", p1, p4, cmpOptStats, 1E-10); delete p1; delete p2; delete p3; return ret; } bool testLabel() { // Tests labelling a 1D Histogram TH1D* h1 = new TH1D("lD1-h1", "h1-Title", numberOfBins, minRange, maxRange); TH1D* h2 = new TH1D("lD1-h2", "h2-Title", numberOfBins, minRange, maxRange); for ( Int_t bin = 1; bin <= h1->GetNbinsX() ; ++bin ) { ostringstream label; label << bin; h2->GetXaxis()->SetBinLabel(bin, label.str().c_str()); } for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(minRange, maxRange); Int_t bin = h1->GetXaxis()->FindBin(value); h1->Fill(h1->GetXaxis()->GetBinCenter(bin)); ostringstream label; label << bin; h2->Fill(label.str().c_str(), 1.0); } bool status = equals("Fill(char*)", h1, h2, cmpOptStats, 1E-13); delete h1; return status; } bool testLabelsInflateProf1D() { // Tests labelling a 1D Profile Int_t numberOfInflates=4; Int_t numberOfFills = numberOfBins; Double_t maxRangeInflate = maxRange; for ( Int_t i = 0; i < numberOfInflates; ++i ) { numberOfFills *= 2; maxRangeInflate = 2*maxRangeInflate - 1; } TProfile* p1 = new TProfile("tLI1D-p1", "p1-Title", numberOfBins, minRange, maxRange); TProfile* p2 = new TProfile("tLI1D-p2", "p2-Title", numberOfFills, minRange, maxRangeInflate); p1->GetXaxis()->SetTimeDisplay(1); for ( Int_t e = 0; e < numberOfFills; ++e ) { Double_t x = e; Double_t y = sin(x/10); p1->SetBinContent(int(x+0.5)+1, y ); p1->SetBinEntries(int(x+0.5)+1, 10.0); p2->SetBinContent(int(x+0.5)+1, y ); p2->SetBinEntries(int(x+0.5)+1, 10.0); } bool ret = equals("LabelsInflateProf1D", p1, p2); delete p1; return ret; } Double_t function1D(Double_t x) { Double_t a = -1.8; return a * x; } bool testInterpolation1D() { // Tests interpolation method for 1D Histogram bool status = false; TH1D* h1 = new TH1D("h1", "h1", numberOfBins, minRange, maxRange); h1->Reset(); for ( Int_t nbinsx = 1; nbinsx <= h1->GetXaxis()->GetNbins(); ++nbinsx ) { Double_t x = h1->GetXaxis()->GetBinCenter(nbinsx); h1->Fill(x, function1D(x)); } int itest = 0; for (itest = 0; itest < 1000; ++itest) { double xp = r.Uniform( h1->GetXaxis()->GetBinCenter(1), h1->GetXaxis()->GetBinCenter(numberOfBins) ); double ip = h1->Interpolate(xp); if ( fabs(ip - function1D(xp) ) > 1.E-13*fabs(ip) ) { status = true; cout << "x: " << xp << " h3->Inter: " << ip << " functionD: " << function1D(xp) << " diff: " << fabs(ip - function1D(xp)) << endl; } } delete h1; if ( defaultEqualOptions & cmpOptPrint ) cout << "testInterpolation1D: \t" << (status?"FAILED":"OK") << endl; return status; } Double_t function2D(Double_t x, Double_t y) { Double_t a = -2.1; Double_t b = 0.6; return a * x + b * y; } bool testInterpolation2D() { // Tests interpolation method for 2D Histogram bool status = false; TH2D* h1 = new TH2D("h1", "h1", numberOfBins, minRange, maxRange, 2*numberOfBins, minRange, maxRange); h1->Reset(); for ( Int_t nbinsx = 1; nbinsx <= h1->GetXaxis()->GetNbins(); ++nbinsx ) for ( Int_t nbinsy = 1; nbinsy <= h1->GetYaxis()->GetNbins(); ++nbinsy ) { Double_t x = h1->GetXaxis()->GetBinCenter(nbinsx); Double_t y = h1->GetYaxis()->GetBinCenter(nbinsy); h1->Fill(x, y, function2D(x, y)); } int itest = 0; for (itest = 0; itest < 1000; ++itest) { double xp = r.Uniform( h1->GetXaxis()->GetBinCenter(1), h1->GetXaxis()->GetBinCenter(numberOfBins) ); double yp = r.Uniform( h1->GetYaxis()->GetBinCenter(1), h1->GetYaxis()->GetBinCenter(numberOfBins) ); double ip = h1->Interpolate(xp, yp); if ( fabs(ip - function2D(xp, yp) ) > 1.E-13*fabs(ip) ) { status = true; cout << "x: " << xp << " y: " << yp << " h3->Inter: " << ip << " function: " << function2D(xp, yp) << " diff: " << fabs(ip - function2D(xp, yp)) << endl; } } delete h1; if ( defaultEqualOptions & cmpOptPrint ) cout << "testInterpolation2D: \t" << (status?"FAILED":"OK") << endl; return status; } Double_t function3D(Double_t x, Double_t y, Double_t z) { Double_t a = 0.3; Double_t b = 6; Double_t c = -2; return a * x + b * y + c * z; } bool testInterpolation3D() { // Tests interpolation method for 3D Histogram bool status = false; TH3D* h1 = new TH3D("h1", "h1", numberOfBins, minRange, maxRange, 2*numberOfBins, minRange, maxRange, 4*numberOfBins, minRange, maxRange); h1->Reset(); for ( Int_t nbinsx = 1; nbinsx <= h1->GetXaxis()->GetNbins(); ++nbinsx ) for ( Int_t nbinsy = 1; nbinsy <= h1->GetYaxis()->GetNbins(); ++nbinsy ) for ( Int_t nbinsz = 1; nbinsz <= h1->GetZaxis()->GetNbins(); ++nbinsz ) { Double_t x = h1->GetXaxis()->GetBinCenter(nbinsx); Double_t y = h1->GetYaxis()->GetBinCenter(nbinsy); Double_t z = h1->GetZaxis()->GetBinCenter(nbinsz); h1->Fill(x, y, z, function3D(x, y, z)); } int itest = 0; for (itest = 0; itest < 1000; ++itest) { double xp = r.Uniform( h1->GetXaxis()->GetBinCenter(1), h1->GetXaxis()->GetBinCenter(numberOfBins) ); double yp = r.Uniform( h1->GetYaxis()->GetBinCenter(1), h1->GetYaxis()->GetBinCenter(numberOfBins) ); double zp = r.Uniform( h1->GetZaxis()->GetBinCenter(1), h1->GetZaxis()->GetBinCenter(numberOfBins) ); double ip = h1->Interpolate(xp, yp, zp); if ( fabs(ip - function3D(xp, yp, zp) ) > 1.E-15*fabs(ip) ) status = true; } delete h1; if ( defaultEqualOptions & cmpOptPrint ) cout << "testInterpolation3D: \t" << (status?"FAILED":"OK") << endl; return status; } bool testRefRead1D() { // Tests consistency with a reference file for 1D Histogram if ( refFileOption == refFileWrite ) { TH1D* h1 = new TH1D("rr1D-h1", "h1-Title", numberOfBins, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(value, 1.0); } h1->Write(); return 0; } else { TH1D* h1 = static_cast<TH1D*> ( refFile->Get("rr1D-h1") ); TH1D* h2 = new TH1D("rr1D-h2", "h2-Title", numberOfBins, minRange, maxRange); h2->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t value = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(value, 1.0); } bool ret = equals("Ref Read Hist 1D", h1, h2, cmpOptStats); delete h1; return ret; } } bool testRefReadProf1D() { // Tests consistency with a reference file for 1D Profile if ( refFileOption == refFileWrite ) { TProfile* p1 = new TProfile("rr1D-p1", "p1-Title", numberOfBins, minRange, maxRange); // p1->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, 1.0); } p1->Write(); return 0; } else { TH1::SetDefaultSumw2(false); TProfile* p1 = static_cast<TProfile*> ( refFile->Get("rr1D-p1") ); TProfile* p2 = new TProfile("rr1D-p2", "p2-Title", numberOfBins, minRange, maxRange); // p2->Sumw2(); for ( Int_t e = 0; e < nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, 1.0); } bool ret = equals("Ref Read Prof 1D", p1, p2, cmpOptStats); TH1::SetDefaultSumw2(true); delete p1; return ret; } } bool testRefRead2D() { // Tests consistency with a reference file for 2D Histogram if ( refFileOption == refFileWrite ) { TH2D* h1 = new TH2D("rr2D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, 1.0); } h1->Write(); return 0; } else { TH2D* h1 = static_cast<TH2D*> ( refFile->Get("rr2D-h1") ); TH2D* h2 = new TH2D("rr2D-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange); h2->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, 1.0); } bool ret = equals("Ref Read Hist 2D", h1, h2, cmpOptStats); delete h1; return ret; } } bool testRefReadProf2D() { // Tests consistency with a reference file for 2D Profile if ( refFileOption == refFileWrite ) { TProfile2D* p1 = new TProfile2D("rr2D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, 1.0); } p1->Write(); return 0; } else { TProfile2D* p1 = static_cast<TProfile2D*> ( refFile->Get("rr2D-p1") ); TProfile2D* p2 = new TProfile2D("rr2D-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, 1.0); } bool ret = equals("Ref Read Prof 2D", p1, p2, cmpOptStats ); delete p1; return ret; } } bool testRefRead3D() { // Tests consistency with a reference file for 3D Histogram if ( refFileOption == refFileWrite ) { TH3D* h1 = new TH3D("rr3D-h1", "h1-Title", numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange); h1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h1->Fill(x, y, z, 1.0); } h1->Write(); return 0; } else { TH3D* h1 = static_cast<TH3D*> ( refFile->Get("rr3D-h1") ); TH3D* h2 = new TH3D("rr3D-h2", "h2-Title", numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange); h2->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); h2->Fill(x, y, z, 1.0); } bool ret = equals("Ref Read Hist 3D", h1, h2, cmpOptStats); delete h1; return ret; } } bool testRefReadProf3D() { // Tests consistency with a reference file for 3D Profile if ( refFileOption == refFileWrite ) { TProfile3D* p1 = new TProfile3D("rr3D-p1", "p1-Title", numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p1->Fill(x, y, z, t, 1.0); } p1->Write(); return 0; } else { TProfile3D* p1 = static_cast<TProfile3D*> ( refFile->Get("rr3D-p1") ); TProfile3D* p2 = new TProfile3D("rr3D-p2", "p2-Title", numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange, numberOfBins, minRange, maxRange); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t x = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t y = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t z = r.Uniform(0.9 * minRange, 1.1 * maxRange); Double_t t = r.Uniform(0.9 * minRange, 1.1 * maxRange); p2->Fill(x, y, z, t, 1.0); } bool ret = equals("Ref Read Prof 3D", p1, p2, cmpOptStats); delete p1; return ret; } } bool testRefReadSparse() { // Tests consistency with a reference file for Sparse Histogram Int_t bsize[] = { TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) )}; Double_t xmin[] = {minRange, minRange, minRange}; Double_t xmax[] = {maxRange, maxRange, maxRange}; if ( refFileOption == refFileWrite ) { THnSparseD* s1 = new THnSparseD("rr-s1", "s1-Title", 3, bsize, xmin, xmax); s1->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[1] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[2] = r.Uniform( minRange * .9 , maxRange * 1.1 ); s1->Fill(points); } s1->Write(); return 0; } else { THnSparseD* s1 = static_cast<THnSparseD*> ( refFile->Get("rr-s1") ); THnSparseD* s2 = new THnSparseD("rr-s1", "s1-Title", 3, bsize, xmin, xmax); s2->Sumw2(); for ( Int_t e = 0; e < nEvents * nEvents; ++e ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[1] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[2] = r.Uniform( minRange * .9 , maxRange * 1.1 ); s2->Fill(points); } bool ret = equals("Ref Read Sparse", s1, s2, cmpOptStats); delete s1; return ret; } } bool testIntegerRebin() { // Tests rebin method with an integer as input for 1D Histogram const int rebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ); UInt_t seed = r.GetSeed(); TH1D* h1 = new TH1D("h1","Original Histogram", TMath::Nint( r.Uniform(1, 5) ) * rebin, minRange, maxRange); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) h1->Fill( r.Uniform( minRange * .9 , maxRange * 1.1 ) ); TH1D* h2 = static_cast<TH1D*>( h1->Rebin(rebin, "testIntegerRebin") ); TH1D* h3 = new TH1D("testIntegerRebin2", "testIntegerRebin2", h1->GetNbinsX() / rebin, minRange, maxRange); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) h3->Fill( r.Uniform( minRange * .9 , maxRange * 1.1 ) ); bool ret = equals("TestIntegerRebinHist", h2, h3, cmpOptStats ); delete h1; delete h2; return ret; } bool testIntegerRebinProfile() { // Tests rebin method with an integer as input for 1D Profile const int rebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ); TProfile* p1 = new TProfile("p1","p1-Title", TMath::Nint( r.Uniform(1, 5) ) * rebin, minRange, maxRange); TProfile* p3 = new TProfile("testIntRebProf", "testIntRebProf", p1->GetNbinsX() / rebin, minRange, maxRange); for ( Int_t i = 0; i < nEvents; ++i ) { Double_t x = r.Uniform( minRange * .9 , maxRange * 1.1 ); Double_t y = r.Uniform( minRange * .9 , maxRange * 1.1 ); p1->Fill( x, y ); p3->Fill( x, y ); } TProfile* p2 = static_cast<TProfile*>( p1->Rebin(rebin, "testIntegerRebin") ); bool ret = equals("TestIntegerRebinProf", p2, p3, cmpOptStats ); delete p1; delete p2; return ret; } bool testIntegerRebinNoName() { // Tests rebin method with an integer as input and without name for 1D Histogram const int rebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ); UInt_t seed = r.GetSeed(); TH1D* h1 = new TH1D("h2","Original Histogram", TMath::Nint( r.Uniform(1, 5) ) * rebin, minRange, maxRange); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) h1->Fill( r.Uniform( minRange * .9 , maxRange * 1.1 ) ); TH1D* h2 = dynamic_cast<TH1D*>( h1->Clone() ); h2->Rebin(rebin); TH1D* h3 = new TH1D("testIntegerRebinNoName", "testIntegerRebinNoName", int(h1->GetNbinsX() / rebin + 0.1), minRange, maxRange); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) h3->Fill( r.Uniform( minRange * .9 , maxRange * 1.1 ) ); bool ret = equals("TestIntRebinNoName", h2, h3, cmpOptStats ); delete h1; delete h2; return ret; } bool testIntegerRebinNoNameProfile() { // Tests rebin method with an integer as input and without name for 1D Profile const int rebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ); TProfile* p1 = new TProfile("p1","p1-Title", TMath::Nint( r.Uniform(1, 5) ) * rebin, minRange, maxRange); TProfile* p3 = new TProfile("testIntRebNNProf", "testIntRebNNProf", int(p1->GetNbinsX() / rebin + 0.1), minRange, maxRange); for ( Int_t i = 0; i < nEvents; ++i ) { Double_t x = r.Uniform( minRange * .9 , maxRange * 1.1 ); Double_t y = r.Uniform( minRange * .9 , maxRange * 1.1 ); p1->Fill( x, y ); p3->Fill( x, y ); } TProfile* p2 = dynamic_cast<TProfile*>( p1->Clone() ); p2->Rebin(rebin); bool ret = equals("TestIntRebNoNamProf", p2, p3, cmpOptStats); delete p1; delete p2; return ret; } bool testArrayRebin() { // Tests rebin method with an array as input for 1D Histogram const int rebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ) + 1; UInt_t seed = r.GetSeed(); TH1D* h1 = new TH1D("h3","Original Histogram", TMath::Nint( r.Uniform(1, 5) ) * rebin * 2, minRange, maxRange); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) h1->Fill( r.Uniform( minRange * .9 , maxRange * 1.1 ) ); // Create vector Double_t * rebinArray = new Double_t[rebin]; r.RndmArray(rebin, rebinArray); std::sort(rebinArray, rebinArray + rebin); for ( Int_t i = 0; i < rebin; ++i ) { rebinArray[i] = TMath::Nint( rebinArray[i] * ( h1->GetNbinsX() - 2 ) + 2 ); rebinArray[i] = h1->GetBinLowEdge( h1->GetXaxis()->FindBin( rebinArray[i] ) ); } rebinArray[0] = minRange; rebinArray[rebin-1] = maxRange; #ifdef __DEBUG__ for ( Int_t i = 0; i < rebin; ++i ) cout << rebinArray[i] << endl; cout << "rebin: " << rebin << endl; #endif TH1D* h2 = static_cast<TH1D*>( h1->Rebin(rebin - 1, "testArrayRebin", rebinArray) ); TH1D* h3 = new TH1D("testArrayRebin2", "testArrayRebin2", rebin - 1, rebinArray ); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) h3->Fill( r.Uniform( minRange * .9 , maxRange * 1.1 ) ); delete [] rebinArray; bool ret = equals("TestArrayRebin", h2, h3, cmpOptStats); delete h1; delete h2; return ret; } bool testArrayRebinProfile() { // Tests rebin method with an array as input for 1D Profile const int rebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ) + 1; UInt_t seed = r.GetSeed(); TProfile* p1 = new TProfile("p3","Original Histogram", TMath::Nint( r.Uniform(1, 5) ) * rebin * 2, minRange, maxRange); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) { Double_t x = r.Uniform( minRange * .9 , maxRange * 1.1 ); Double_t y = r.Uniform( minRange * .9 , maxRange * 1.1 ); p1->Fill( x, y ); } // Create vector Double_t * rebinArray = new Double_t[rebin]; r.RndmArray(rebin, rebinArray); std::sort(rebinArray, rebinArray + rebin); for ( Int_t i = 0; i < rebin; ++i ) { rebinArray[i] = TMath::Nint( rebinArray[i] * ( p1->GetNbinsX() - 2 ) + 2 ); rebinArray[i] = p1->GetBinLowEdge( p1->GetXaxis()->FindBin( rebinArray[i] ) ); } rebinArray[0] = minRange; rebinArray[rebin-1] = maxRange; #ifdef __DEBUG__ for ( Int_t i = 0; i < rebin; ++i ) cout << rebinArray[i] << endl; cout << "rebin: " << rebin << endl; #endif TProfile* p2 = static_cast<TProfile*>( p1->Rebin(rebin - 1, "testArrayRebinProf", rebinArray) ); TProfile* p3 = new TProfile("testArrayRebinProf2", "testArrayRebinProf2", rebin - 1, rebinArray ); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) { Double_t x = r.Uniform( minRange * .9 , maxRange * 1.1 ); Double_t y = r.Uniform( minRange * .9 , maxRange * 1.1 ); p3->Fill( x, y ); } delete [] rebinArray; bool ret = equals("TestArrayRebinProf", p2, p3, cmpOptStats ); delete p1; delete p2; return ret; } bool test2DRebin() { // Tests rebin method for 1D Histogram Int_t xrebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ); Int_t yrebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ); TH2D* h2d = new TH2D("h2d","Original Histogram", xrebin * TMath::Nint( r.Uniform(1, 5) ), minRange, maxRange, yrebin * TMath::Nint( r.Uniform(1, 5) ), minRange, maxRange); UInt_t seed = r.GetSeed(); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) h2d->Fill( r.Uniform( minRange * .9 , maxRange * 1.1 ), r.Uniform( minRange * .9 , maxRange * 1.1 ) ); TH2D* h2d2 = (TH2D*) h2d->Rebin2D(xrebin,yrebin, "h2d2"); TH2D* h3 = new TH2D("test2DRebin", "test2DRebin", h2d->GetNbinsX() / xrebin, minRange, maxRange, h2d->GetNbinsY() / yrebin, minRange, maxRange ); r.SetSeed(seed); for ( Int_t i = 0; i < nEvents; ++i ) h3->Fill( r.Uniform( minRange * .9 , maxRange * 1.1 ), r.Uniform( minRange * .9 , maxRange * 1.1 ) ); bool ret = equals("TestIntRebin2D", h2d2, h3, cmpOptStats); delete h2d; delete h2d2; return ret; } bool testSparseRebin1() { // Tests rebin method for Sparse Histogram const int rebin = TMath::Nint( r.Uniform(minRebin, maxRebin) ); Int_t bsizeRebin[] = { TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) ), TMath::Nint( r.Uniform(1, 5) )}; Int_t bsize[] = { bsizeRebin[0] * rebin, bsizeRebin[1] * rebin, bsizeRebin[2] * rebin}; Double_t xmin[] = {minRange, minRange, minRange}; Double_t xmax[] = {maxRange, maxRange, maxRange}; THnSparseD* s1 = new THnSparseD("rebin1-s1","s1-Title", 3, bsize, xmin, xmax); THnSparseD* s2 = new THnSparseD("rebin1-s2","s2-Title", 3, bsizeRebin, xmin, xmax); for ( Int_t i = 0; i < nEvents; ++i ) { Double_t points[3]; points[0] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[1] = r.Uniform( minRange * .9 , maxRange * 1.1 ); points[2] = r.Uniform( minRange * .9 , maxRange * 1.1 ); s1->Fill(points); s2->Fill(points); } THnSparse* s3 = s1->Rebin(rebin); bool ret = equals("THnSparse Rebin 1", s2, s3); delete s1; delete s2; return ret; } // In case of deviation, the profiles' content will not work anymore // try only for testing the statistics static const double centre_deviation = 0.0; class ProjectionTester { // This class implements the tests for all types of projections of // all the classes tested in this file. private: static const unsigned int binsizeX = 8; static const unsigned int binsizeY = 10; static const unsigned int binsizeZ = 12; static const int lower_limit = 0; static const int upper_limit = 10; TH3D* h3; TH2D* h2XY; TH2D* h2XZ; TH2D* h2YX; TH2D* h2YZ; TH2D* h2ZX; TH2D* h2ZY; TH1D* h1X; TH1D* h1Y; TH1D* h1Z; TH1D* h1XStats; TH1D* h1YStats; TH1D* h1ZStats; TProfile2D* pe2XY; TProfile2D* pe2XZ; TProfile2D* pe2YX; TProfile2D* pe2YZ; TProfile2D* pe2ZX; TProfile2D* pe2ZY; TH2D* h2wXY; TH2D* h2wXZ; TH2D* h2wYX; TH2D* h2wYZ; TH2D* h2wZX; TH2D* h2wZY; TProfile* pe1XY; TProfile* pe1XZ; TProfile* pe1YX; TProfile* pe1YZ; TProfile* pe1ZX; TProfile* pe1ZY; TH1D* hw1XZ; TH1D* hw1XY; TH1D* hw1YX; TH1D* hw1YZ; TH1D* hw1ZX; TH1D* hw1ZY; THnSparseD* s3; bool buildWithWeights; public: ProjectionTester() { CreateHistograms(); buildWithWeights = false; } void CreateHistograms() { h3 = new TH3D("h3","h3", binsizeX, lower_limit, upper_limit, binsizeY, lower_limit, upper_limit, binsizeZ, lower_limit, upper_limit); h2XY = new TH2D("h2XY", "h2XY", binsizeX, lower_limit, upper_limit, binsizeY, lower_limit, upper_limit); h2XZ = new TH2D("h2XZ", "h2XZ", binsizeX, lower_limit, upper_limit, binsizeZ, lower_limit, upper_limit); h2YX = new TH2D("h2YX", "h2YX", binsizeY, lower_limit, upper_limit, binsizeX, lower_limit, upper_limit); h2YZ = new TH2D("h2YZ", "h2YZ", binsizeY, lower_limit, upper_limit, binsizeZ, lower_limit, upper_limit); h2ZX = new TH2D("h2ZX", "h2ZX", binsizeZ, lower_limit, upper_limit, binsizeX, lower_limit, upper_limit); h2ZY = new TH2D("h2ZY", "h2ZY", binsizeZ, lower_limit, upper_limit, binsizeY, lower_limit, upper_limit); // The bit is set for all the histograms (It's a statistic variable) TH1::StatOverflows(kTRUE); h1X = new TH1D("h1X", "h1X", binsizeX, lower_limit, upper_limit); h1Y = new TH1D("h1Y", "h1Y", binsizeY, lower_limit, upper_limit); h1Z = new TH1D("h1Z", "h1Z", binsizeZ, lower_limit, upper_limit); h1XStats = new TH1D("h1XStats", "h1XStats", binsizeX, lower_limit, upper_limit); h1YStats = new TH1D("h1YStats", "h1YStats", binsizeY, lower_limit, upper_limit); h1ZStats = new TH1D("h1ZStats", "h1ZStats", binsizeZ, lower_limit, upper_limit); pe2XY = new TProfile2D("pe2XY", "pe2XY", binsizeX, lower_limit, upper_limit, binsizeY, lower_limit, upper_limit); pe2XZ = new TProfile2D("pe2XZ", "pe2XZ", binsizeX, lower_limit, upper_limit, binsizeZ, lower_limit, upper_limit); pe2YX = new TProfile2D("pe2YX", "pe2YX", binsizeY, lower_limit, upper_limit, binsizeX, lower_limit, upper_limit); pe2YZ = new TProfile2D("pe2YZ", "pe2YZ", binsizeY, lower_limit, upper_limit, binsizeZ, lower_limit, upper_limit); pe2ZX = new TProfile2D("pe2ZX", "pe2ZX", binsizeZ, lower_limit, upper_limit, binsizeX, lower_limit, upper_limit); pe2ZY = new TProfile2D("pe2ZY", "pe2ZY", binsizeZ, lower_limit, upper_limit, binsizeY, lower_limit, upper_limit); h2wXY = new TH2D("h2wXY", "h2wXY", binsizeX, lower_limit, upper_limit, binsizeY, lower_limit, upper_limit); h2wXZ = new TH2D("h2wXZ", "h2wXZ", binsizeX, lower_limit, upper_limit, binsizeZ, lower_limit, upper_limit); h2wYX = new TH2D("h2wYX", "h2wYX", binsizeY, lower_limit, upper_limit, binsizeX, lower_limit, upper_limit); h2wYZ = new TH2D("h2wYZ", "h2wYZ", binsizeY, lower_limit, upper_limit, binsizeZ, lower_limit, upper_limit); h2wZX = new TH2D("h2wZX", "h2wZX", binsizeZ, lower_limit, upper_limit, binsizeX, lower_limit, upper_limit); h2wZY = new TH2D("h2wZY", "h2wZY", binsizeZ, lower_limit, upper_limit, binsizeY, lower_limit, upper_limit); h2wXY->Sumw2(); h2wXZ->Sumw2(); h2wYX->Sumw2(); h2wYZ->Sumw2(); h2wZX->Sumw2(); h2wZY->Sumw2(); pe1XY = new TProfile("pe1XY", "pe1XY", binsizeX, lower_limit, upper_limit); pe1XZ = new TProfile("pe1XZ", "pe1XZ", binsizeX, lower_limit, upper_limit); pe1YX = new TProfile("pe1YX", "pe1YX", binsizeY, lower_limit, upper_limit); pe1YZ = new TProfile("pe1YZ", "pe1YZ", binsizeY, lower_limit, upper_limit); pe1ZX = new TProfile("pe1ZX", "pe1ZX", binsizeZ, lower_limit, upper_limit); pe1ZY = new TProfile("pe1ZY", "pe1ZY", binsizeZ, lower_limit, upper_limit); hw1XY = new TH1D("hw1XY", "hw1XY", binsizeX, lower_limit, upper_limit); hw1XZ = new TH1D("hw1XZ", "hw1XZ", binsizeX, lower_limit, upper_limit); hw1YX = new TH1D("hw1YX", "hw1YX", binsizeY, lower_limit, upper_limit); hw1YZ = new TH1D("hw1YZ", "hw1YZ", binsizeY, lower_limit, upper_limit); hw1ZX = new TH1D("hw1ZX", "hw1ZX", binsizeZ, lower_limit, upper_limit); hw1ZY = new TH1D("hw1ZY", "hw1ZY", binsizeZ, lower_limit, upper_limit); hw1XZ->Sumw2(); hw1XY->Sumw2(); hw1YX->Sumw2(); hw1YZ->Sumw2(); hw1ZX->Sumw2(); hw1ZY->Sumw2(); Int_t bsize[] = {binsizeX, binsizeY, binsizeZ}; Double_t xmin[] = {lower_limit, lower_limit, lower_limit}; Double_t xmax[] = {upper_limit, upper_limit, upper_limit}; s3 = new THnSparseD("s3","s3", 3, bsize, xmin, xmax); } void DeleteHistograms() { delete h3; delete h2XY; delete h2XZ; delete h2YX; delete h2YZ; delete h2ZX; delete h2ZY; delete h1X; delete h1Y; delete h1Z; delete h1XStats; delete h1YStats; delete h1ZStats; delete pe2XY; delete pe2XZ; delete pe2YX; delete pe2YZ; delete pe2ZX; delete pe2ZY; delete h2wXY; delete h2wXZ; delete h2wYX; delete h2wYZ; delete h2wZX; delete h2wZY; delete pe1XY; delete pe1XZ; delete pe1YX; delete pe1YZ; delete pe1ZY; delete pe1ZX; delete hw1XY; delete hw1XZ; delete hw1YX; delete hw1YZ; delete hw1ZX; delete hw1ZY; delete s3; } virtual ~ProjectionTester() { DeleteHistograms(); } void buildHistograms() { if (h3->GetSumw2N() ) s3->Sumw2(); for ( int ix = 0; ix <= h3->GetXaxis()->GetNbins() + 1; ++ix ) { double x = centre_deviation * h3->GetXaxis()->GetBinWidth(ix) + h3->GetXaxis()->GetBinCenter(ix); for ( int iy = 0; iy <= h3->GetYaxis()->GetNbins() + 1; ++iy ) { double y = centre_deviation * h3->GetYaxis()->GetBinWidth(iy) + h3->GetYaxis()->GetBinCenter(iy); for ( int iz = 0; iz <= h3->GetZaxis()->GetNbins() + 1; ++iz ) { double z = centre_deviation * h3->GetZaxis()->GetBinWidth(iz) + h3->GetZaxis()->GetBinCenter(iz); for ( int i = 0; i < (int) r.Uniform(1,3); ++i ) { h3->Fill(x,y,z); Double_t points[] = {x,y,z}; s3->Fill(points); h2XY->Fill(x,y); h2XZ->Fill(x,z); h2YX->Fill(y,x); h2YZ->Fill(y,z); h2ZX->Fill(z,x); h2ZY->Fill(z,y); h1X->Fill(x); h1Y->Fill(y); h1Z->Fill(z); if ( ix > 0 && ix < h3->GetXaxis()->GetNbins() + 1 && iy > 0 && iy < h3->GetYaxis()->GetNbins() + 1 && iz > 0 && iz < h3->GetZaxis()->GetNbins() + 1 ) { h1XStats->Fill(x); h1YStats->Fill(y); h1ZStats->Fill(z); } pe2XY->Fill(x,y,z); pe2XZ->Fill(x,z,y); pe2YX->Fill(y,x,z); pe2YZ->Fill(y,z,x); pe2ZX->Fill(z,x,y); pe2ZY->Fill(z,y,x); h2wXY->Fill(x,y,z); h2wXZ->Fill(x,z,y); h2wYX->Fill(y,x,z); h2wYZ->Fill(y,z,x); h2wZX->Fill(z,x,y); h2wZY->Fill(z,y,x); pe1XY->Fill(x,y); pe1XZ->Fill(x,z); pe1YX->Fill(y,x); pe1YZ->Fill(y,z); pe1ZX->Fill(z,x); pe1ZY->Fill(z,y); hw1XY->Fill(x,y); hw1XZ->Fill(x,z); hw1YX->Fill(y,x); hw1YZ->Fill(y,z); hw1ZX->Fill(z,x); hw1ZY->Fill(z,y); } } } } buildWithWeights = false; } void buildHistogramsWithWeights() { s3->Sumw2(); for ( int ix = 0; ix <= h3->GetXaxis()->GetNbins() + 1; ++ix ) { double x = centre_deviation * h3->GetXaxis()->GetBinWidth(ix) + h3->GetXaxis()->GetBinCenter(ix); for ( int iy = 0; iy <= h3->GetYaxis()->GetNbins() + 1; ++iy ) { double y = centre_deviation * h3->GetYaxis()->GetBinWidth(iy) + h3->GetYaxis()->GetBinCenter(iy); for ( int iz = 0; iz <= h3->GetZaxis()->GetNbins() + 1; ++iz ) { double z = centre_deviation * h3->GetZaxis()->GetBinWidth(iz) + h3->GetZaxis()->GetBinCenter(iz); Double_t w = (Double_t) r.Uniform(1,3); h3->Fill(x,y,z,w); Double_t points[] = {x,y,z}; s3->Fill(points,w); h2XY->Fill(x,y,w); h2XZ->Fill(x,z,w); h2YX->Fill(y,x,w); h2YZ->Fill(y,z,w); h2ZX->Fill(z,x,w); h2ZY->Fill(z,y,w); h1X->Fill(x,w); h1Y->Fill(y,w); h1Z->Fill(z,w); if ( ix > 0 && ix < h3->GetXaxis()->GetNbins() + 1 && iy > 0 && iy < h3->GetYaxis()->GetNbins() + 1 && iz > 0 && iz < h3->GetZaxis()->GetNbins() + 1 ) { h1XStats->Fill(x,w); h1YStats->Fill(y,w); h1ZStats->Fill(z,w); } pe2XY->Fill(x,y,z,w); pe2XZ->Fill(x,z,y,w); pe2YX->Fill(y,x,z,w); pe2YZ->Fill(y,z,x,w); pe2ZX->Fill(z,x,y,w); pe2ZY->Fill(z,y,x,w); h2wXY->Fill(x,y,z*w); h2wXZ->Fill(x,z,y*w); h2wYX->Fill(y,x,z*w); h2wYZ->Fill(y,z,x*w); h2wZX->Fill(z,x,y*w); h2wZY->Fill(z,y,x*w); pe1XY->Fill(x,y,w); pe1XZ->Fill(x,z,w); pe1YX->Fill(y,x,w); pe1YZ->Fill(y,z,w); pe1ZX->Fill(z,x,w); pe1ZY->Fill(z,y,w); hw1XY->Fill(x,y*w); hw1XZ->Fill(x,z*w); hw1YX->Fill(y,x*w); hw1YZ->Fill(y,z*w); hw1ZX->Fill(z,x*w); hw1ZY->Fill(z,y*w); } } } buildWithWeights = true; } void buildHistograms(int xmin, int xmax, int ymin, int ymax, int zmin, int zmax) { for ( int ix = 0; ix <= h3->GetXaxis()->GetNbins() + 1; ++ix ) { double x = centre_deviation * h3->GetXaxis()->GetBinCenter(ix); for ( int iy = 0; iy <= h3->GetYaxis()->GetNbins() + 1; ++iy ) { double y = centre_deviation * h3->GetYaxis()->GetBinCenter(iy); for ( int iz = 0; iz <= h3->GetZaxis()->GetNbins() + 1; ++iz ) { double z = centre_deviation * h3->GetZaxis()->GetBinCenter(iz); for ( int i = 0; i < (int) r.Uniform(1,3); ++i ) { h3->Fill(x,y,z); Double_t points[] = {x,y,z}; s3->Fill(points); if ( h3->GetXaxis()->FindBin(x) >= xmin && h3->GetXaxis()->FindBin(x) <= xmax && h3->GetYaxis()->FindBin(y) >= ymin && h3->GetYaxis()->FindBin(y) <= ymax && h3->GetZaxis()->FindBin(z) >= zmin && h3->GetZaxis()->FindBin(z) <= zmax ) { if ( defaultEqualOptions & cmpOptPrint ) cout << "Filling (" << x << "," << y << "," << z << ")!" << endl; h2XY->Fill(x,y); h2XZ->Fill(x,z); h2YX->Fill(y,x); h2YZ->Fill(y,z); h2ZX->Fill(z,x); h2ZY->Fill(z,y); h1X->Fill(x); h1Y->Fill(y); h1Z->Fill(z); pe2XY->Fill(x,y,z); pe2XZ->Fill(x,z,y); pe2YX->Fill(y,x,z); pe2YZ->Fill(y,z,x); pe2ZX->Fill(z,x,y); pe2ZY->Fill(z,y,x); h2wXY->Fill(x,y,z); h2wXZ->Fill(x,z,y); h2wYX->Fill(y,x,z); h2wYZ->Fill(y,z,x); h2wZX->Fill(z,x,y); h2wZY->Fill(z,y,x); pe1XY->Fill(x,y); pe1XZ->Fill(x,z); pe1YX->Fill(y,x); pe1YZ->Fill(y,z); pe1ZX->Fill(z,x); pe1ZY->Fill(z,y); hw1XY->Fill(x,y); hw1XZ->Fill(x,z); hw1YX->Fill(y,x); hw1YZ->Fill(y,z); hw1ZX->Fill(z,x); hw1ZY->Fill(z,y); } } } } } h3->GetXaxis()->SetRange(xmin, xmax); h3->GetYaxis()->SetRange(ymin, ymax); h3->GetZaxis()->SetRange(zmin, zmax); h2XY->GetXaxis()->SetRange(xmin, xmax); h2XY->GetYaxis()->SetRange(ymin, ymax); h2XZ->GetXaxis()->SetRange(xmin, xmax); h2XZ->GetZaxis()->SetRange(zmin, zmax); h2YX->GetYaxis()->SetRange(ymin, ymax); h2YX->GetXaxis()->SetRange(xmin, xmax); h2YZ->GetYaxis()->SetRange(ymin, ymax); h2YZ->GetZaxis()->SetRange(zmin, zmax); h2ZX->GetZaxis()->SetRange(zmin, zmax); h2ZX->GetXaxis()->SetRange(xmin, xmax); h2ZY->GetZaxis()->SetRange(zmin, zmax); h2ZY->GetYaxis()->SetRange(ymin, ymax); h1X->GetXaxis()->SetRange(xmin, xmax); h1Y->GetXaxis()->SetRange(ymin, ymax); h1Z->GetXaxis()->SetRange(zmin, zmax); // Neet to set up the rest of the ranges! s3->GetAxis(1)->SetRange(xmin, xmax); s3->GetAxis(2)->SetRange(ymin, ymax); s3->GetAxis(3)->SetRange(zmin, zmax); buildWithWeights = false; } int compareHistograms() { int status = 0; int options = 0; // TH2 derived from TH3 options = cmpOptStats; status += equals("TH3 -> XY", h2XY, (TH2D*) h3->Project3D("yx"), options); status += equals("TH3 -> XZ", h2XZ, (TH2D*) h3->Project3D("zx"), options); status += equals("TH3 -> YX", h2YX, (TH2D*) h3->Project3D("XY"), options); status += equals("TH3 -> YZ", h2YZ, (TH2D*) h3->Project3D("ZY"), options); status += equals("TH3 -> ZX", h2ZX, (TH2D*) h3->Project3D("XZ"), options); status += equals("TH3 -> ZY", h2ZY, (TH2D*) h3->Project3D("YZ"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // TH1 derived from TH3 options = cmpOptStats; status += equals("TH3 -> X", h1X, (TH1D*) h3->Project3D("x"), options); status += equals("TH3 -> Y", h1Y, (TH1D*) h3->Project3D("y"), options); status += equals("TH3 -> Z", h1Z, (TH1D*) h3->Project3D("z"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // TH1 derived from h2XY options = cmpOptStats; status += equals("TH2XY -> X", h1X, (TH1D*) h2XY->ProjectionX("x"), options); status += equals("TH2XY -> Y", h1Y, (TH1D*) h2XY->ProjectionY("y"), options); // TH1 derived from h2XZ status += equals("TH2XZ -> X", h1X, (TH1D*) h2XZ->ProjectionX("x"), options); status += equals("TH2XZ -> Z", h1Z, (TH1D*) h2XZ->ProjectionY("z"), options); // TH1 derived from h2YX status += equals("TH2YX -> Y", h1Y, (TH1D*) h2YX->ProjectionX("y"), options); status += equals("TH2YX -> X", h1X, (TH1D*) h2YX->ProjectionY("x"), options); // TH1 derived from h2YZ status += equals("TH2YZ -> Y", h1Y, (TH1D*) h2YZ->ProjectionX("y"), options); status += equals("TH2YZ -> Z", h1Z, (TH1D*) h2YZ->ProjectionY("z"), options); // TH1 derived from h2ZX status += equals("TH2ZX -> Z", h1Z, (TH1D*) h2ZX->ProjectionX("z"), options); status += equals("TH2ZX -> X", h1X, (TH1D*) h2ZX->ProjectionY("x"), options); // TH1 derived from h2ZY status += equals("TH2ZY -> Z", h1Z, (TH1D*) h2ZY->ProjectionX("z"), options); status += equals("TH2ZY -> Y", h1Y, (TH1D*) h2ZY->ProjectionY("y"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // Now the histograms comming from the Profiles! options = cmpOptStats; status += equals("TH3 -> PBXY", h2XY, (TH2D*) h3->Project3DProfile("yx UF OF")->ProjectionXY("1", "B"), options ); status += equals("TH3 -> PBXZ", h2XZ, (TH2D*) h3->Project3DProfile("zx UF OF")->ProjectionXY("2", "B"), options); status += equals("TH3 -> PBYX", h2YX, (TH2D*) h3->Project3DProfile("xy UF OF")->ProjectionXY("3", "B"), options); status += equals("TH3 -> PBYZ", h2YZ, (TH2D*) h3->Project3DProfile("zy UF OF")->ProjectionXY("4", "B"), options); status += equals("TH3 -> PBZX", h2ZX, (TH2D*) h3->Project3DProfile("xz UF OF")->ProjectionXY("5", "B"), options); status += equals("TH3 -> PBZY", h2ZY, (TH2D*) h3->Project3DProfile("yz UF OF")->ProjectionXY("6", "B"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // test directly project3dprofile options = cmpOptStats; status += equals("TH3 -> PXY", (TH2D*) pe2XY, (TH2D*) h3->Project3DProfile("yx UF OF"), options); status += equals("TH3 -> PXZ", (TH2D*) pe2XZ, (TH2D*) h3->Project3DProfile("zx UF OF"), options); status += equals("TH3 -> PYX", (TH2D*) pe2YX, (TH2D*) h3->Project3DProfile("xy UF OF"), options); status += equals("TH3 -> PYZ", (TH2D*) pe2YZ, (TH2D*) h3->Project3DProfile("zy UF OF"), options); status += equals("TH3 -> PZX", (TH2D*) pe2ZX, (TH2D*) h3->Project3DProfile("xz UF OF"), options); status += equals("TH3 -> PZY", (TH2D*) pe2ZY, (TH2D*) h3->Project3DProfile("yz UF OF"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // test option E of ProjectionXY options = 0; status += equals("TH3 -> PEXY", (TH2D*) pe2XY, (TH2D*) h3->Project3DProfile("yx UF OF")->ProjectionXY("1", "E"), options); status += equals("TH3 -> PEXZ", (TH2D*) pe2XZ, (TH2D*) h3->Project3DProfile("zx UF OF")->ProjectionXY("2", "E"), options); status += equals("TH3 -> PEYX", (TH2D*) pe2YX, (TH2D*) h3->Project3DProfile("xy UF OF")->ProjectionXY("3", "E"), options); status += equals("TH3 -> PEYZ", (TH2D*) pe2YZ, (TH2D*) h3->Project3DProfile("zy UF OF")->ProjectionXY("4", "E"), options); status += equals("TH3 -> PEZX", (TH2D*) pe2ZX, (TH2D*) h3->Project3DProfile("xz UF OF")->ProjectionXY("5", "E"), options); status += equals("TH3 -> PEZY", (TH2D*) pe2ZY, (TH2D*) h3->Project3DProfile("yz UF OF")->ProjectionXY("6", "E"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // test option W of ProjectionXY // The error fails when built with weights. It is not properly calculated if ( buildWithWeights ) options = cmpOptNoError; status += equals("TH3 -> PWXY", (TH2D*) h2wXY, (TH2D*) h3->Project3DProfile("yx UF OF")->ProjectionXY("1", "W"), options); status += equals("TH3 -> PWXZ", (TH2D*) h2wXZ, (TH2D*) h3->Project3DProfile("zx UF OF")->ProjectionXY("2", "W"), options); status += equals("TH3 -> PWYX", (TH2D*) h2wYX, (TH2D*) h3->Project3DProfile("xy UF OF")->ProjectionXY("3", "W"), options); status += equals("TH3 -> PWYZ", (TH2D*) h2wYZ, (TH2D*) h3->Project3DProfile("zy UF OF")->ProjectionXY("4", "W"), options); status += equals("TH3 -> PWZX", (TH2D*) h2wZX, (TH2D*) h3->Project3DProfile("xz UF OF")->ProjectionXY("5", "W"), options); status += equals("TH3 -> PWZY", (TH2D*) h2wZY, (TH2D*) h3->Project3DProfile("yz UF OF")->ProjectionXY("6", "W"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // test 1D histograms options = cmpOptStats; // ProfileX re-use the same histo if sme name is given. // need to give a diffrent name for each projectino (x,y,Z) otherwise we end-up in different bins // t.b.d: ProfileX make a new histo if non compatible status += equals("TH2XY -> PBX", h1X, (TH1D*) h2XY->ProfileX("PBX", 0,h2XY->GetYaxis()->GetNbins()+1)->ProjectionX("1", "B"),options); status += equals("TH2XY -> PBY", h1Y, (TH1D*) h2XY->ProfileY("PBY", 0,h2XY->GetXaxis()->GetNbins()+1)->ProjectionX("1", "B"),options); status += equals("TH2XZ -> PBX", h1X, (TH1D*) h2XZ->ProfileX("PBX", 0,h2XZ->GetYaxis()->GetNbins()+1)->ProjectionX("1", "B"),options); status += equals("TH2XZ -> PBZ", h1Z, (TH1D*) h2XZ->ProfileY("PBZ", 0,h2XZ->GetXaxis()->GetNbins()+1)->ProjectionX("1", "B"),options,1E-12); status += equals("TH2YX -> PBY", h1Y, (TH1D*) h2YX->ProfileX("PBY", 0,h2YX->GetYaxis()->GetNbins()+1)->ProjectionX("1", "B"),options); status += equals("TH2YX -> PBX", h1X, (TH1D*) h2YX->ProfileY("PBX", 0,h2YX->GetXaxis()->GetNbins()+1)->ProjectionX("1", "B"),options); status += equals("TH2YZ -> PBY", h1Y, (TH1D*) h2YZ->ProfileX("PBY", 0,h2YZ->GetYaxis()->GetNbins()+1)->ProjectionX("1", "B"),options); status += equals("TH2YZ -> PBZ", h1Z, (TH1D*) h2YZ->ProfileY("PBZ", 0,h2YZ->GetXaxis()->GetNbins()+1)->ProjectionX("1", "B"),options,1E-12); status += equals("TH2ZX -> PBZ", h1Z, (TH1D*) h2ZX->ProfileX("PBZ", 0,h2ZX->GetYaxis()->GetNbins()+1)->ProjectionX("1", "B"),options,1E-12); status += equals("TH2ZX -> PBX", h1X, (TH1D*) h2ZX->ProfileY("PBX", 0,h2ZX->GetXaxis()->GetNbins()+1)->ProjectionX("1", "B"),options); status += equals("TH2ZY -> PBZ", h1Z, (TH1D*) h2ZY->ProfileX("PBZ", 0,h2ZY->GetYaxis()->GetNbins()+1)->ProjectionX("1", "B"),options,1E-12); status += equals("TH2ZY -> PBY", h1Y, (TH1D*) h2ZY->ProfileY("PBY", 0,h2ZY->GetXaxis()->GetNbins()+1)->ProjectionX("1", "B"),options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // 1D testing direct profiles options = cmpOptStats; status += equals("TH2XY -> PX", pe1XY, (TH1D*) h2XY->ProfileX("PX", 0,h2XY->GetYaxis()->GetNbins()+1), options); status += equals("TH2XY -> PY", pe1YX, (TH1D*) h2XY->ProfileY("PY", 0,h2XY->GetXaxis()->GetNbins()+1), options); status += equals("TH2XZ -> PX", pe1XZ, (TH1D*) h2XZ->ProfileX("PX", 0,h2XZ->GetYaxis()->GetNbins()+1), options); status += equals("TH2XZ -> PZ", pe1ZX, (TH1D*) h2XZ->ProfileY("PZ", 0,h2XZ->GetXaxis()->GetNbins()+1), options); status += equals("TH2YX -> PY", pe1YX, (TH1D*) h2YX->ProfileX("PY", 0,h2YX->GetYaxis()->GetNbins()+1), options); status += equals("TH2YX -> PX", pe1XY, (TH1D*) h2YX->ProfileY("PX", 0,h2YX->GetXaxis()->GetNbins()+1), options); status += equals("TH2YZ -> PY", pe1YZ, (TH1D*) h2YZ->ProfileX("PY", 0,h2YZ->GetYaxis()->GetNbins()+1), options); status += equals("TH2YZ -> PZ", pe1ZY, (TH1D*) h2YZ->ProfileY("PZ", 0,h2YZ->GetXaxis()->GetNbins()+1), options); status += equals("TH2ZX -> PZ", pe1ZX, (TH1D*) h2ZX->ProfileX("PZ", 0,h2ZX->GetYaxis()->GetNbins()+1), options); status += equals("TH2ZX -> PX", pe1XZ, (TH1D*) h2ZX->ProfileY("PX", 0,h2ZX->GetXaxis()->GetNbins()+1), options); status += equals("TH2ZY -> PZ", pe1ZY, (TH1D*) h2ZY->ProfileX("PZ", 0,h2ZY->GetYaxis()->GetNbins()+1), options); status += equals("TH2ZY -> PY", pe1YZ, (TH1D*) h2ZY->ProfileY("PY", 0,h2ZY->GetXaxis()->GetNbins()+1), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // 1D testing e profiles options = 0; status += equals("TH2XY -> PEX", pe1XY, (TH1D*) h2XY->ProfileX("PEX", 0,h2XY->GetYaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2XY -> PEY", pe1YX, (TH1D*) h2XY->ProfileY("PEY", 0,h2XY->GetXaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2XZ -> PEX", pe1XZ, (TH1D*) h2XZ->ProfileX("PEX", 0,h2XZ->GetYaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2XZ -> PEZ", pe1ZX, (TH1D*) h2XZ->ProfileY("PEZ", 0,h2XZ->GetXaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2YX -> PEY", pe1YX, (TH1D*) h2YX->ProfileX("PEY", 0,h2YX->GetYaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2YX -> PEX", pe1XY, (TH1D*) h2YX->ProfileY("PEX", 0,h2YX->GetXaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2YZ -> PEY", pe1YZ, (TH1D*) h2YZ->ProfileX("PEY", 0,h2YZ->GetYaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2YZ -> PEZ", pe1ZY, (TH1D*) h2YZ->ProfileY("PEZ", 0,h2YZ->GetXaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2ZX -> PEZ", pe1ZX, (TH1D*) h2ZX->ProfileX("PEZ", 0,h2ZX->GetYaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2ZX -> PEX", pe1XZ, (TH1D*) h2ZX->ProfileY("PEX", 0,h2ZX->GetXaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2ZY -> PEZ", pe1ZY, (TH1D*) h2ZY->ProfileX("PEZ", 0,h2ZY->GetYaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); status += equals("TH2ZY -> PEY", pe1YZ, (TH1D*) h2ZY->ProfileY("PEY", 0,h2ZY->GetXaxis()->GetNbins()+1)->ProjectionX("1", "E"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // 1D testing w profiles // The error is not properly propagated when build with weights :S if ( buildWithWeights ) options = cmpOptNoError; status += equals("TH2XY -> PWX", hw1XY, (TH1D*) h2XY->ProfileX("PWX", 0,h2XY->GetYaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2XY -> PWY", hw1YX, (TH1D*) h2XY->ProfileY("PWY", 0,h2XY->GetXaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2XZ -> PWX", hw1XZ, (TH1D*) h2XZ->ProfileX("PWX", 0,h2XZ->GetYaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2XZ -> PWZ", hw1ZX, (TH1D*) h2XZ->ProfileY("PWZ", 0,h2XZ->GetXaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2YX -> PWY", hw1YX, (TH1D*) h2YX->ProfileX("PWY", 0,h2YX->GetYaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2YX -> PWX", hw1XY, (TH1D*) h2YX->ProfileY("PWX", 0,h2YX->GetXaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2YZ -> PWY", hw1YZ, (TH1D*) h2YZ->ProfileX("PWY", 0,h2YZ->GetYaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2YZ -> PWZ", hw1ZY, (TH1D*) h2YZ->ProfileY("PWZ", 0,h2YZ->GetXaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2ZX -> PWZ", hw1ZX, (TH1D*) h2ZX->ProfileX("PWZ", 0,h2ZX->GetYaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2ZX -> PWX", hw1XZ, (TH1D*) h2ZX->ProfileY("PWX", 0,h2ZX->GetXaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2ZY -> PWZ", hw1ZY, (TH1D*) h2ZY->ProfileX("PWZ", 0,h2ZY->GetYaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); status += equals("TH2ZY -> PWY", hw1YZ, (TH1D*) h2ZY->ProfileY("PWY", 0,h2ZY->GetXaxis()->GetNbins()+1)->ProjectionX("1", "W"), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // TH2 derived from STH3 options = cmpOptStats; status += equals("STH3 -> XY", h2XY, (TH2D*) s3->Projection(1,0), options); status += equals("STH3 -> XZ", h2XZ, (TH2D*) s3->Projection(2,0), options); status += equals("STH3 -> YX", h2YX, (TH2D*) s3->Projection(0,1), options); status += equals("STH3 -> YZ", h2YZ, (TH2D*) s3->Projection(2,1), options); status += equals("STH3 -> ZX", h2ZX, (TH2D*) s3->Projection(0,2), options); status += equals("STH3 -> ZY", h2ZY, (TH2D*) s3->Projection(1,2), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; // TH1 derived from STH3 options = cmpOptStats; status += equals("STH3 -> X", h1X, (TH1D*) s3->Projection(0), options); status += equals("STH3 -> Y", h1Y, (TH1D*) s3->Projection(1), options); status += equals("STH3 -> Z", h1Z, (TH1D*) s3->Projection(2), options); options = 0; if ( defaultEqualOptions & cmpOptPrint ) cout << "----------------------------------------------" << endl; return status; } }; int stressHistogram() { r.SetSeed(initialSeed); int GlobalStatus = false; int status = false; TBenchmark bm; bm.Start("stressHistogram"); cout << "****************************************************************************" <<endl; cout << "* Starting stress H I S T O G R A M *" <<endl; cout << "****************************************************************************" <<endl; // Test 1 if ( defaultEqualOptions & cmpOptPrint ) cout << "**********************************\n" << " Test without weights \n" << "**********************************\n" << endl; TH1::SetDefaultSumw2(); ProjectionTester* ht = new ProjectionTester(); ht->buildHistograms(); //ht->buildHistograms(2,4,5,6,8,10); status = ht->compareHistograms(); GlobalStatus += status; printResult("Testing Projections without weights..............................", status); delete ht; // Test 2 if ( defaultEqualOptions & cmpOptPrint ) cout << "**********************************\n" << " Test with weights \n" << "**********************************\n" << endl; ProjectionTester* ht2 = new ProjectionTester(); ht2->buildHistogramsWithWeights(); status = ht2->compareHistograms(); GlobalStatus += status; printResult("Testing Projections with weights.................................", status); delete ht2; // Test 3 const unsigned int numberOfRebin = 8; pointer2Test rebinTestPointer[numberOfRebin] = { testIntegerRebin, testIntegerRebinProfile, testIntegerRebinNoName, testIntegerRebinNoNameProfile, testArrayRebin, testArrayRebinProfile, test2DRebin, testSparseRebin1}; struct TTestSuite rebinTestSuite = { numberOfRebin, "Histogram Rebinning..............................................", rebinTestPointer }; // Test 4 // Add Tests const unsigned int numberOfAdds = 16; pointer2Test addTestPointer[numberOfAdds] = { testAdd1, testAddProfile1, testAdd2, testAddProfile2, testAdd3, testAdd2D3, testAdd3D3, testAdd2D1, testAdd2DProfile1, testAdd2D2, testAdd2DProfile2, testAdd3D1, testAdd3DProfile1, testAdd3D2, testAdd3DProfile2, testAddSparse }; struct TTestSuite addTestSuite = { numberOfAdds, "Add tests for 1D, 2D and 3D Histograms and Profiles..............", addTestPointer }; // Test 5 // Multiply Tests const unsigned int numberOfMultiply = 7; pointer2Test multiplyTestPointer[numberOfMultiply] = { testMul1, testMul2, testMul2D1, testMul2D2, testMul3D1, testMul3D2, testMulSparse }; struct TTestSuite multiplyTestSuite = { numberOfMultiply, "Multiply tests for 1D, 2D and 3D Histograms......................", multiplyTestPointer }; // Test 6 // Divide Tests const unsigned int numberOfDivide = 6; pointer2Test divideTestPointer[numberOfDivide] = { testDivide1, testDivide2, testDivide2D1, testDivide2D2, testDivide3D1, testDivide3D2 }; struct TTestSuite divideTestSuite = { numberOfDivide, "Divide tests for 1D, 2D and 3D Histograms........................", divideTestPointer }; // Still to do: Division for profiles // The division methods for the profiles have to be changed to // calculate the errors correctly. // Test 7 // Copy Tests const unsigned int numberOfCopy = 19; pointer2Test copyTestPointer[numberOfCopy] = { testAssign1D, testAssignProfile1D, testCopyConstructor1D, testCopyConstructorProfile1D, testClone1D, testCloneProfile1D, testAssign2D, testAssignProfile2D, testCopyConstructor2D, testCopyConstructorProfile2D, testClone2D, testCloneProfile2D, testAssign3D, testAssignProfile3D, testCopyConstructor3D, testCopyConstructorProfile3D, testClone3D, testCloneProfile3D, testCloneSparse }; struct TTestSuite copyTestSuite = { numberOfCopy, "Copy tests for 1D, 2D and 3D Histograms and Profiles.............", copyTestPointer }; // Test 8 // WriteRead Tests const unsigned int numberOfReadwrite = 7; pointer2Test readwriteTestPointer[numberOfReadwrite] = { testWriteRead1D, testWriteReadProfile1D, testWriteRead2D, testWriteReadProfile2D, testWriteRead3D, testWriteReadProfile3D, testWriteReadSparse }; struct TTestSuite readwriteTestSuite = { numberOfReadwrite, "Read/Write tests for 1D, 2D and 3D Histograms and Profiles.......", readwriteTestPointer }; // Test 9 // Merge Tests const unsigned int numberOfMerge = 32; pointer2Test mergeTestPointer[numberOfMerge] = { testMerge1D, testMergeProf1D, testMerge2D, testMergeProf2D, testMerge3D, testMergeProf3D, testMergeSparse, testMerge1DLabelSame, testMergeProf1DLabelSame, testMerge2DLabelSame, testMergeProf2DLabelSame, testMerge3DLabelSame, testMergeProf3DLabelSame, /*testMerge1DLabelDiff,*/ testMergeProf1DLabelDiff, testMerge2DLabelDiff, testMergeProf2DLabelDiff, testMerge3DLabelDiff, testMergeProf3DLabelDiff, testMerge1DLabelAll, testMergeProf1DLabelAll, testMerge2DLabelAll, testMergeProf2DLabelAll, testMerge3DLabelAll, testMergeProf3DLabelAll, /*testMerge1DLabelAllDiff*/ testMergeProf1DLabelAllDiff, testMerge2DLabelAllDiff, testMergeProf2DLabelAllDiff, testMerge3DLabelAllDiff, testMergeProf3DLabelAllDiff, testMerge1DDiff, testMergeProf1DDiff, testMerge2DDiff/*, testMergeProf2DDiff,*/ /*testMerge3DDiff,*/ /*testMergeProf3DDiff*/ }; struct TTestSuite mergeTestSuite = { numberOfMerge, "Merge tests for 1D, 2D and 3D Histograms and Profiles............", mergeTestPointer }; // Test 10 // Label Tests const unsigned int numberOfLabel = 2; pointer2Test labelTestPointer[numberOfLabel] = { testLabel, testLabelsInflateProf1D }; struct TTestSuite labelTestSuite = { numberOfLabel, "Label tests for 1D Histograms (TAxis)............................", labelTestPointer }; // Test 11 // Interpolation Tests const unsigned int numberOfInterpolation = 3; pointer2Test interpolationTestPointer[numberOfInterpolation] = { testInterpolation1D, testInterpolation2D, testInterpolation3D }; struct TTestSuite interpolationTestSuite = { numberOfInterpolation, "Interpolation tests for Histograms...............................", interpolationTestPointer }; // Combination of tests const unsigned int numberOfSuits = 9; struct TTestSuite* testSuite[numberOfSuits]; testSuite[0] = &rebinTestSuite; testSuite[1] = &addTestSuite; testSuite[2] = &multiplyTestSuite; testSuite[3] = ÷TestSuite; testSuite[4] = ©TestSuite; testSuite[5] = &readwriteTestSuite; testSuite[6] = &mergeTestSuite; testSuite[7] = &labelTestSuite; testSuite[8] = &interpolationTestSuite; status = 0; for ( unsigned int i = 0; i < numberOfSuits; ++i ) { bool internalStatus = false; // #pragma omp parallel // #pragma omp for reduction(|: internalStatus) for ( unsigned int j = 0; j < testSuite[i]->nTests; ++j ) { internalStatus |= testSuite[i]->tests[j](); } printResult( testSuite[i]->suiteName, internalStatus); status += internalStatus; } GlobalStatus += status; // Test 12 // Reference Tests const unsigned int numberOfRefRead = 7; pointer2Test refReadTestPointer[numberOfRefRead] = { testRefRead1D, testRefReadProf1D, testRefRead2D, testRefReadProf2D, testRefRead3D, testRefReadProf3D, testRefReadSparse }; struct TTestSuite refReadTestSuite = { numberOfRefRead, "Reference File Read for Histograms and Profiles..................", refReadTestPointer }; if ( refFileOption == refFileWrite ) { refFile = TFile::Open(refFileName, "RECREATE"); } else { refFile = TFile::Open(refFileName); } if ( refFile != 0 ) { r.SetSeed(8652); status = 0; for ( unsigned int j = 0; j < refReadTestSuite.nTests; ++j ) { status += refReadTestSuite.tests[j](); } printResult( refReadTestSuite.suiteName, status); GlobalStatus += status; } else { Warning("stressHistogram", "No reference file found"); } bm.Stop("stressHistogram"); std::cout <<"****************************************************************************\n"; bm.Print("stressHistogram"); const double reftime = 32; // needs to be updated // ref time on pcbrun4 double rootmarks = 860 * reftime / bm.GetCpuTime("stressHistogram"); std::cout << " ROOTMARKS = " << rootmarks << " ROOT version: " << gROOT->GetVersion() << "\t" << gROOT->GetSvnBranch() << "@" << gROOT->GetSvnRevision() << std::endl; std::cout <<"****************************************************************************\n"; return GlobalStatus; } ostream& operator<<(ostream& out, TH1D* h) { out << h->GetName() << ": [" << h->GetBinContent(1); for ( Int_t i = 1; i < h->GetNbinsX(); ++i ) out << ", " << h->GetBinContent(i); out << "] "; return out; } void printResult(const char* msg, bool status) { static int counter = 1; cout << "Test "; cout.width(2); cout<< counter << ": " << msg << (status?"FAILED":"OK") << endl; counter += 1; } // Methods for histogram comparisions int equals(const char* msg, THnSparse* h1, THnSparse* h2, int options, double ERRORLIMIT) { options = options | defaultEqualOptions; bool print = options & cmpOptPrint; bool debug = options & cmpOptDebug; bool compareError = ! (options & cmpOptNoError); int differents = 0; for ( int i = 0; i <= h1->GetAxis(0)->GetNbins() + 1; ++i ) for ( int j = 0; j <= h1->GetAxis(1)->GetNbins() + 1; ++j ) for ( int h = 0; h <= h1->GetAxis(2)->GetNbins() + 1; ++h ) { Double_t x = h1->GetAxis(0)->GetBinCenter(i); Double_t y = h1->GetAxis(1)->GetBinCenter(j); Double_t z = h1->GetAxis(2)->GetBinCenter(h); Int_t bin[3] = {i, j, h}; if (debug) { cout << equals(x, h2->GetAxis(0)->GetBinCenter(i), ERRORLIMIT) << " " << equals(y, h2->GetAxis(1)->GetBinCenter(j), ERRORLIMIT) << " " << equals(z, h2->GetAxis(2)->GetBinCenter(h), ERRORLIMIT) << " " << "[" << x << "," << y << "," << z << "]: " << h1->GetBinContent(bin) << " +/- " << h1->GetBinError(bin) << " | " << h2->GetBinContent(bin) << " +/- " << h2->GetBinError(bin) << " | " << equals(h1->GetBinContent(bin), h2->GetBinContent(bin), ERRORLIMIT) << " " << equals(h1->GetBinError(bin) , h2->GetBinError(bin), ERRORLIMIT) << " " << differents << " " << (fabs(h1->GetBinContent(bin) - h2->GetBinContent(bin))) << endl; } differents += equals(x, h2->GetAxis(0)->GetBinCenter(i), ERRORLIMIT); differents += equals(y, h2->GetAxis(1)->GetBinCenter(j), ERRORLIMIT); differents += equals(z, h2->GetAxis(2)->GetBinCenter(h), ERRORLIMIT); differents += equals(h1->GetBinContent(bin), h2->GetBinContent(bin), ERRORLIMIT); if ( compareError ) differents += equals(h1->GetBinError(bin) , h2->GetBinError(bin), ERRORLIMIT); } // Statistical tests: // No statistical tests possible for THnSparse so far... // if ( compareStats ) // differents += compareStatistics( h1, h2, debug, ERRORLIMIT); if ( print || debug ) cout << msg << ": \t" << (differents?"FAILED":"OK") << endl; delete h2; return differents; } int equals(const char* msg, TH3D* h1, TH3D* h2, int options, double ERRORLIMIT) { options = options | defaultEqualOptions; bool print = options & cmpOptPrint; bool debug = options & cmpOptDebug; bool compareError = ! (options & cmpOptNoError); bool compareStats = options & cmpOptStats; int differents = ( h1 == h2 ); // Check they are not the same histogram! if (debug) { cout << static_cast<void*>(h1) << " " << static_cast<void*>(h2) << " " << (h1 == h2 ) << " " << differents << endl; } for ( int i = 0; i <= h1->GetNbinsX() + 1; ++i ) for ( int j = 0; j <= h1->GetNbinsY() + 1; ++j ) for ( int h = 0; h <= h1->GetNbinsY() + 1; ++h ) { Double_t x = h1->GetXaxis()->GetBinCenter(i); Double_t y = h1->GetYaxis()->GetBinCenter(j); Double_t z = h1->GetZaxis()->GetBinCenter(h); if (debug) { cout << equals(x, h2->GetXaxis()->GetBinCenter(i), ERRORLIMIT) << " " << equals(y, h2->GetYaxis()->GetBinCenter(j), ERRORLIMIT) << " " << equals(z, h2->GetZaxis()->GetBinCenter(h), ERRORLIMIT) << " " << "[" << x << "," << y << "," << z << "]: " << h1->GetBinContent(i,j,h) << " +/- " << h1->GetBinError(i,j,h) << " | " << h2->GetBinContent(i,j,h) << " +/- " << h2->GetBinError(i,j,h) << " | " << equals(h1->GetBinContent(i,j,h), h2->GetBinContent(i,j,h), ERRORLIMIT) << " " << equals(h1->GetBinError(i,j,h) , h2->GetBinError(i,j,h), ERRORLIMIT) << " " << differents << " " << (fabs(h1->GetBinContent(i,j,h) - h2->GetBinContent(i,j,h))) << endl; } differents += (bool) equals(x, h2->GetXaxis()->GetBinCenter(i), ERRORLIMIT); differents += (bool) equals(y, h2->GetYaxis()->GetBinCenter(j), ERRORLIMIT); differents += (bool) equals(z, h2->GetZaxis()->GetBinCenter(h), ERRORLIMIT); differents += (bool) equals(h1->GetBinContent(i,j,h), h2->GetBinContent(i,j,h), ERRORLIMIT); if ( compareError ) differents += (bool) equals(h1->GetBinError(i,j,h) , h2->GetBinError(i,j,h), ERRORLIMIT); } // Statistical tests: if ( compareStats ) differents += compareStatistics( h1, h2, debug, ERRORLIMIT); if ( print || debug ) cout << msg << ": \t" << (differents?"FAILED":"OK") << endl; delete h2; return differents; } int equals(const char* msg, TH2D* h1, TH2D* h2, int options, double ERRORLIMIT) { options = options | defaultEqualOptions; bool print = options & cmpOptPrint; bool debug = options & cmpOptDebug; bool compareError = ! (options & cmpOptNoError); bool compareStats = options & cmpOptStats; int differents = ( h1 == h2 ); // Check they are not the same histogram! if (debug) { cout << static_cast<void*>(h1) << " " << static_cast<void*>(h2) << " " << (h1 == h2 ) << " " << differents << endl; } for ( int i = 0; i <= h1->GetNbinsX() + 1; ++i ) for ( int j = 0; j <= h1->GetNbinsY() + 1; ++j ) { Double_t x = h1->GetXaxis()->GetBinCenter(i); Double_t y = h1->GetYaxis()->GetBinCenter(j); if (debug) { cout << equals(x, h2->GetXaxis()->GetBinCenter(i), ERRORLIMIT) << " " << equals(y, h2->GetYaxis()->GetBinCenter(j), ERRORLIMIT) << " " << "[" << x << "," << y << "]: " << h1->GetBinContent(i,j) << " +/- " << h1->GetBinError(i,j) << " | " << h2->GetBinContent(i,j) << " +/- " << h2->GetBinError(i,j) << " | " << equals(h1->GetBinContent(i,j), h2->GetBinContent(i,j), ERRORLIMIT) << " " << equals(h1->GetBinError(i,j) , h2->GetBinError(i,j), ERRORLIMIT) << " " << differents << " " << (fabs(h1->GetBinContent(i,j) - h2->GetBinContent(i,j))) << endl; } differents += (bool) equals(x, h2->GetXaxis()->GetBinCenter(i), ERRORLIMIT); differents += (bool) equals(y, h2->GetYaxis()->GetBinCenter(j), ERRORLIMIT); differents += (bool) equals(h1->GetBinContent(i,j), h2->GetBinContent(i,j), ERRORLIMIT); if ( compareError ) differents += (bool) equals(h1->GetBinError(i,j) , h2->GetBinError(i,j), ERRORLIMIT); } // Statistical tests: if ( compareStats ) differents += compareStatistics( h1, h2, debug, ERRORLIMIT); if ( print || debug ) cout << msg << ": \t" << (differents?"FAILED":"OK") << endl; delete h2; return differents; } int equals(const char* msg, TH1D* h1, TH1D* h2, int options, double ERRORLIMIT) { options = options | defaultEqualOptions; bool print = options & cmpOptPrint; bool debug = options & cmpOptDebug; bool compareError = ! (options & cmpOptNoError); bool compareStats = options & cmpOptStats; if (debug) { cout << "Nbins = " << h1->GetXaxis()->GetNbins() << " , " << h2->GetXaxis()->GetNbins() << endl; } int differents = ( h1 == h2 ); // Check they are not the same histogram! if (debug) { cout << static_cast<void*>(h1) << " " << static_cast<void*>(h2) << " " << (h1 == h2 ) << " " << differents << endl; } for ( int i = 0; i <= h1->GetNbinsX() + 1; ++i ) { Double_t x = h1->GetXaxis()->GetBinCenter(i); if ( debug ) { cout << equals(x, h2->GetXaxis()->GetBinCenter(i), ERRORLIMIT) << " [" << x << "]: " << h1->GetBinContent(i) << " +/- " << h1->GetBinError(i) << " | " << h2->GetBinContent(i) << " +/- " << h2->GetBinError(i) << " | " << equals(h1->GetBinContent(i), h2->GetBinContent(i), ERRORLIMIT) << " " << equals(h1->GetBinError(i), h2->GetBinError(i), ERRORLIMIT) << " " << differents << endl; } differents += (bool) equals(x, h2->GetXaxis()->GetBinCenter(i), ERRORLIMIT); differents += (bool) equals(h1->GetBinContent(i), h2->GetBinContent(i), ERRORLIMIT); if ( compareError ) differents += (bool) equals(h1->GetBinError(i), h2->GetBinError(i), ERRORLIMIT); } // Statistical tests: if ( compareStats ) differents += compareStatistics( h1, h2, debug, ERRORLIMIT); if ( print || debug ) cout << msg << ": \t" << (differents?"FAILED":"OK") << endl; delete h2; return differents; } int equals(Double_t n1, Double_t n2, double ERRORLIMIT) { return fabs( n1 - n2 ) > ERRORLIMIT * fabs(n1); } int compareStatistics( TH1* h1, TH1* h2, bool debug, double ERRORLIMIT) { int differents = 0; int precLevel = gErrorIgnoreLevel; // switch off Info mesaage from chi2 test if (!debug) gErrorIgnoreLevel = 1001; if (debug) h2->Print(); std::string option = "WW OF UF"; const char * opt = option.c_str(); differents += (h1->Chi2Test(h2, opt) < 1); differents += (h2->Chi2Test(h1,opt) < 1); differents += (bool) equals(h1->Chi2Test(h2,opt), h2->Chi2Test(h1,opt), ERRORLIMIT); if ( debug ) cout << "Chi2Test " << h1->Chi2Test(h2, opt) << " " << h2->Chi2Test(h1, opt) << " | " << differents << endl; if (!debug) gErrorIgnoreLevel = precLevel; // Mean differents += (bool) equals(h1->GetMean(1), h2->GetMean(1), ERRORLIMIT); if ( debug ) cout << "Mean: " << h1->GetMean(1) << " " << h2->GetMean(1) << " | " << fabs( h1->GetMean(1) - h2->GetMean(1) ) << " " << differents << endl; // RMS differents += (bool) equals( h1->GetRMS(1), h2->GetRMS(1), ERRORLIMIT); if ( debug ) cout << "RMS: " << h1->GetRMS(1) << " " << h2->GetRMS(1) << " | " << fabs( h1->GetRMS(1) - h2->GetRMS(1) ) << " " << differents << endl; // Number of Entries // differents += (bool) equals( h1->GetEffectiveEntries(), h2->GetEffectiveEntries(), 100*ERRORLIMIT); // if ( debug ) // cout << "Entries: " << h1->GetEffectiveEntries() << " " << h2->GetEffectiveEntries() // << " | " << fabs( h1->GetEffectiveEntries() - h2->GetEffectiveEntries() ) // << " " << differents // << endl; return differents; } int main(int argc, char** argv) { TApplication* theApp = 0; TH1::SetDefaultSumw2(); if ( __DRAW__ ) theApp = new TApplication("App",&argc,argv); int ret = stressHistogram(); if ( __DRAW__ ) { theApp->Run(); delete theApp; theApp = 0; } return ret; }