From e3c89741df9db0fd1f7b735628bc3059c32f05a2 Mon Sep 17 00:00:00 2001 From: Olivier Couet <olivier.couet@cern.ch> Date: Wed, 22 Jun 2016 13:19:32 +0200 Subject: [PATCH] - Apply patches suggested by Mattias Ellert - Remove trailing white spaces --- hist/hist/src/TGraphAsymmErrors.cxx | 39 +++++++++++++++++------------ 1 file changed, 23 insertions(+), 16 deletions(-) diff --git a/hist/hist/src/TGraphAsymmErrors.cxx b/hist/hist/src/TGraphAsymmErrors.cxx index 2504ddf34f5..1bb46ec456e 100644 --- a/hist/hist/src/TGraphAsymmErrors.cxx +++ b/hist/hist/src/TGraphAsymmErrors.cxx @@ -510,26 +510,33 @@ void TGraphAsymmErrors::BayesDivide(const TH1* pass, const TH1* total, Option_t /// /// If the histograms are not filled with unit weights, the number of effective /// entries is used to normalise the bin contents which might lead to wrong results. -/// Begin_Latex effective entries = #frac{(#sum w_{i})^{2}}{#sum w_{i}^{2}}End_Latex -/// +/// \f[ +/// \text{effective entries} = \frac{(\sum w_{i})^{2}}{\sum w_{i}^{2}} +/// \f] /// The points are assigned a x value at the center of each histogram bin. -/// The y values are Begin_Latex eff = #frac{pass}{total} End_Latex for all options except for the +/// The y values are \f$\text{eff} = \frac{\text{pass}}{\text{total}}\f$ +/// for all options except for the /// bayesian methods where the result depends on the chosen option. /// -/// If the denominator becomes 0 or pass > total, the corresponding bin is +/// If the denominator becomes 0 or pass > total, the corresponding bin is /// skipped. /// /// 2) calculating ratios of two Poisson means (option 'pois'): /// -------------------------------------------------------------- /// /// The two histograms are interpreted as independent Poisson processes and the ratio -/// Begin_Latex #tau = #frac{n_{1}}{n_{2}} = #frac{#varepsilon}{1 - #varepsilon} with #varepsilon = #frac{n_{1}}{n_{1} + n_{2}} End_Latex -/// The histogram 'pass' is interpreted as n_{1} and the total histogram -/// is used for n_{2} +/// \f[ +/// \tau = \frac{n_{1}}{n_{2}} = \frac{\varepsilon}{1 - \varepsilon} +/// \f] +/// with \f$\varepsilon = \frac{n_{1}}{n_{1} + n_{2}}\f$. +/// The histogram 'pass' is interpreted as \f$n_{1}\f$ and the total histogram +/// is used for \f$n_{2}\f$. /// /// The (asymmetric) uncertainties of the Poisson ratio are linked to the uncertainties /// of efficiency by a parameter transformation: -/// Begin_Latex #Delta #tau_{low/up} = #frac{1}{(1 - #varepsilon)^{2}} #Delta #varepsilon_{low/up} End_Latex +/// \f[ +/// \Delta \tau_{low/up} = \frac{1}{(1 - \varepsilon)^{2}} \Delta \varepsilon_{low/up} +/// \f] /// /// The x errors span each histogram bin (lowedge ... lowedge+width) /// The y errors depend on the chosen statistic methode which can be determined @@ -563,8 +570,8 @@ void TGraphAsymmErrors::BayesDivide(const TH1* pass, const TH1* total, Option_t /// oscillation on the actual coverage probability a couple of approximations and /// methodes has been developped. For a detailed discussion, please have a look at /// this statistical paper: -/// <a href="http://www-stat.wharton.upenn.edu/~tcai/paper/Binomial-StatSci.pdf" -/// > http://www-stat.wharton.upenn.edu/~tcai/paper/Binomial-StatSci.pdf</a> +/// http://www-stat.wharton.upenn.edu/~tcai/paper/Binomial-StatSci.pdf + void TGraphAsymmErrors::Divide(const TH1* pass, const TH1* total, Option_t *opt) { @@ -586,7 +593,7 @@ void TGraphAsymmErrors::Divide(const TH1* pass, const TH1* total, Option_t *opt) //compare sum of weights with sum of squares of weights // re-compute here to be sure to get the right values Double_t psumw = 0; - Double_t psumw2 = 0; + Double_t psumw2 = 0; if (pass->GetSumw2()->fN > 0) { for (int i = 0; i < pass->GetNcells(); ++i) { psumw += pass->GetBinContent(i); @@ -601,7 +608,7 @@ void TGraphAsymmErrors::Divide(const TH1* pass, const TH1* total, Option_t *opt) bEffective = true; Double_t tsumw = 0; - Double_t tsumw2 = 0; + Double_t tsumw2 = 0; if (total->GetSumw2()->fN > 0) { for (int i = 0; i < total->GetNcells(); ++i) { tsumw += total->GetBinContent(i); @@ -643,7 +650,7 @@ void TGraphAsymmErrors::Divide(const TH1* pass, const TH1* total, Option_t *opt) option.ReplaceAll("v",""); bVerbose = true; if (bEffective) - Info("Divide","weight will be considered in the Histogram Ratio"); + Info("Divide","weight will be considered in the Histogram Ratio"); } @@ -798,9 +805,9 @@ void TGraphAsymmErrors::Divide(const TH1* pass, const TH1* total, Option_t *opt) { // tw += pw; // tw2 += pw2; - // compute ratio on the effective entries ( p and t) + // compute ratio on the effective entries ( p and t) // special case is when (pw=0, pw2=0) in this case we cannot get the bin weight. - // we use then the overall weight of the full histogram + // we use then the overall weight of the full histogram if (pw == 0 && pw2 == 0) p = 0; else @@ -823,7 +830,7 @@ void TGraphAsymmErrors::Divide(const TH1* pass, const TH1* total, Option_t *opt) // weight of histogram - sumw2/sumw wratio = (pw * tsumw) /(p * tsumw2 ); else if (p > 0) - wratio = pw/p; //not sure if needed + wratio = pw/p; //not sure if needed else { // case both pw and tw are zero - we skip these bins if (!plot0Bins) continue; // skip bins with total <= 0 -- GitLab