From c276894d20e705f8d20e0d32ceebf62dacbcf559 Mon Sep 17 00:00:00 2001 From: Olivier Couet <olivier.couet@cern.ch> Date: Wed, 22 Jun 2016 13:20:19 +0200 Subject: [PATCH] - Apply patches suggested by Mattias Ellert - Simplify the reference to the example. --- hist/hist/src/THnSparse.cxx | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/hist/hist/src/THnSparse.cxx b/hist/hist/src/THnSparse.cxx index d6b9e6349e3..34412cf4dbd 100644 --- a/hist/hist/src/THnSparse.cxx +++ b/hist/hist/src/THnSparse.cxx @@ -544,7 +544,7 @@ with linear index linidx. A possible call would be ## Efficiency TH1 and TH2 are generally faster than THnSparse for one and two dimensional distributions. THnSparse becomes competitive for a sparsely filled TH3 -with large numbers of bins per dimension. The tutorial hist/sparsehist.C +with large numbers of bins per dimension. The tutorial sparsehist.C shows the turning point. On a AMD64 with 8GB memory, THnSparse "wins" starting with a TH3 with 30 bins per dimension. Using a THnSparse for a one-dimensional histogram is only reasonable if it has a huge number of bins. @@ -765,8 +765,7 @@ Double_t THnSparse::GetBinContent(Long64_t idx, Int_t* coord /* = 0 */) const //////////////////////////////////////////////////////////////////////////////// /// Get square of the error of bin addressed by linidx as -/// BEGIN_LATEX #sum weight^{2} -/// END_LATEX +/// \f$\sum weight^{2}\f$ /// If errors are not enabled (via Sumw2() or CalculateErrors()) /// return contents. -- GitLab