From b3d06f2a25488903a64a187128ac5fd2539dfacf Mon Sep 17 00:00:00 2001 From: Rene Brun <Rene.Brun@cern.ch> Date: Mon, 22 Jun 2009 10:48:25 +0000 Subject: [PATCH] from Wouter: new tutorial git-svn-id: http://root.cern.ch/svn/root/trunk@29132 27541ba8-7e3a-0410-8455-c3a389f83636 --- tutorials/roofit/rf610_visualerror.C | 159 +++++++++++++++++++++++++++ 1 file changed, 159 insertions(+) create mode 100644 tutorials/roofit/rf610_visualerror.C diff --git a/tutorials/roofit/rf610_visualerror.C b/tutorials/roofit/rf610_visualerror.C new file mode 100644 index 00000000000..8c21d2b1910 --- /dev/null +++ b/tutorials/roofit/rf610_visualerror.C @@ -0,0 +1,159 @@ +///////////////////////////////////////////////////////////////////////// +// +// 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #610 +// +// Visualization of errors from a covariance matrix +// +// +// +// 04/2009 - Wouter Verkerke +// +///////////////////////////////////////////////////////////////////////// + +#ifndef __CINT__ +#include "RooGlobalFunc.h" +#endif +#include "RooRealVar.h" +#include "RooDataHist.h" +#include "RooGaussian.h" +#include "RooAddPdf.h" +#include "RooPlot.h" +#include "TCanvas.h" +using namespace RooFit ; + + +void rf610_visualerror() +{ + // S e t u p e x a m p l e f i t + // --------------------------------------- + + // Create sum of two Gaussians p.d.f. with factory + RooRealVar x("x","x",-10,10) ; + + RooRealVar m("m","m",0,-10,10) ; + RooRealVar s("s","s",2,1,50) ; + RooGaussian sig("sig","sig",x,m,s) ; + + RooRealVar m2("m2","m2",-1,-10,10) ; + RooRealVar s2("s2","s2",6,1,50) ; + RooGaussian bkg("bkg","bkg",x,m2,s2) ; + + RooRealVar fsig("fsig","fsig",0.33,0,1) ; + RooAddPdf model("model","model",RooArgList(sig,bkg),fsig) ; + + // Create binned dataset + x.setBins(25) ; + RooAbsData* d = model.generateBinned(x,1000) ; + + // Perform fit and save fit result + RooFitResult* r = model.fitTo(*d,Save()) ; + + + // V i s u a l i z e f i t e r r o r + // ------------------------------------- + + // Make plot frame + RooPlot* frame = x.frame(Bins(40),Title("P.d.f with visualized 1-sigma error band")) ; + d->plotOn(frame) ; + + // Visualize 1-sigma error encoded in fit result 'r' as orange band using linear error propagation + // This results in an error band that is by construction symmetric + // + // The linear error is calculated as + // error(x) = Z* F_a(x) * Corr(a,a') F_a'(x) + // + // where F_a(x) = [ f(x,a+da) - f(x,a-da) ] / 2, + // + // with f(x) = the plotted curve + // 'da' = error taken from the fit result + // Corr(a,a') = the correlation matrix from the fit result + // Z = requested significance 'Z sigma band' + // + // The linear method is fast (required 2*N evaluations of the curve, where N is the number of parameters), + // but may not be accurate in the presence of strong correlations (~>0.9) and at Z>2 due to linear and + // Gaussian approximations made + // + model.plotOn(frame,VisualizeError(*r,1),FillColor(kOrange)) ; + + + // Calculate error using sampling method and visualize as dashed red line. + // + // In this method a number of curves is calculated with variations of the parameter values, as sampled + // from a multi-variate Gaussian p.d.f. that is constructed from the fit results covariance matrix. + // The error(x) is determined by calculating a central interval that capture N% of the variations + // for each valye of x, where N% is controlled by Z (i.e. Z=1 gives N=68%). The number of sampling curves + // is chosen to be such that at least 100 curves are expected to be outside the N% interval, and is minimally + // 100 (e.g. Z=1->Ncurve=356, Z=2->Ncurve=2156)) Intervals from the sampling method can be asymmetric, + // and may perform better in the presence of strong correlations, but may take (much) longer to calculate + model.plotOn(frame,VisualizeError(*r,1,kFALSE),DrawOption("L"),LineWidth(2),LineColor(kRed)) ; + + // Perform the same type of error visualization on the background component only. + // The VisualizeError() option can generally applied to _any_ kind of plot (components, asymmetries, efficiencies etc..) + model.plotOn(frame,VisualizeError(*r,1),FillColor(kOrange),Components("bkg")) ; + model.plotOn(frame,VisualizeError(*r,1,kFALSE),DrawOption("L"),LineWidth(2),LineColor(kRed),Components("bkg"),LineStyle(kDashed)) ; + + // Overlay central value + model.plotOn(frame) ; + model.plotOn(frame,Components("bkg"),LineStyle(kDashed)) ; + d->plotOn(frame) ; + frame->SetMinimum(0) ; + + + + // V i s u a l i z e p a r t i a l f i t e r r o r + // ------------------------------------------------------ + + // Make plot frame + RooPlot* frame2 = x.frame(Bins(40),Title("Visualization of 2-sigma partial error from (m,m2)")) ; + + // Visualize partial error. For partial error visualization the covariance matrix is first reduced as follows + // ___ -1 + // Vred = V22 = V11 - V12 * V22 * V21 + // + // Where V11,V12,V21,V22 represent a block decomposition of the covariance matrix into observables that + // are propagated (labeled by index '1') and that are not propagated (labeled by index '2'), and V22bar + // is the Shur complement of V22, calculated as shown above + // + // (Note that Vred is _not_ a simple sub-matrix of V) + + // Propagate partial error due to shape parameters (m,m2) using linear and sampling method + model.plotOn(frame2,VisualizeError(*r,RooArgSet(m,m2),2),FillColor(kCyan)) ; + model.plotOn(frame2,Components("bkg"),VisualizeError(*r,RooArgSet(m,m2),2),FillColor(kCyan)) ; + + model.plotOn(frame2) ; + model.plotOn(frame2,Components("bkg"),LineStyle(kDashed)) ; + frame2->SetMinimum(0) ; + + + // Make plot frame + RooPlot* frame3 = x.frame(Bins(40),Title("Visualization of 2-sigma partial error from (s,s2)")) ; + + // Propagate partial error due to yield parameter using linear and sampling method + model.plotOn(frame3,VisualizeError(*r,RooArgSet(s,s2),2),FillColor(kGreen)) ; + model.plotOn(frame3,Components("bkg"),VisualizeError(*r,RooArgSet(s,s2),2),FillColor(kGreen)) ; + + model.plotOn(frame3) ; + model.plotOn(frame3,Components("bkg"),LineStyle(kDashed)) ; + frame3->SetMinimum(0) ; + + + // Make plot frame + RooPlot* frame4 = x.frame(Bins(40),Title("Visualization of 2-sigma partial error from fsig")) ; + + // Propagate partial error due to yield parameter using linear and sampling method + model.plotOn(frame4,VisualizeError(*r,RooArgSet(fsig),2),FillColor(kMagenta)) ; + model.plotOn(frame4,Components("bkg"),VisualizeError(*r,RooArgSet(fsig),2),FillColor(kMagenta)) ; + + model.plotOn(frame4) ; + model.plotOn(frame4,Components("bkg"),LineStyle(kDashed)) ; + frame4->SetMinimum(0) ; + + + + TCanvas* c = new TCanvas("rf610_visualerror","rf610_visualerror",800,800) ; + c->Divide(2,2) ; + c->cd(1) ; frame->Draw() ; + c->cd(2) ; frame2->Draw() ; + c->cd(3) ; frame3->Draw() ; + c->cd(4) ; frame4->Draw() ; +} -- GitLab