From 9e3861ce62e68dbfbcf354b58c11f29f552bdbdc Mon Sep 17 00:00:00 2001
From: Fons Rademakers <Fons.Rademakers@cern.ch>
Date: Mon, 4 Feb 2013 18:36:25 +0000
Subject: [PATCH] fix warnings reported by the latest Apple LLVM 4.2 clang++
 (based on llvm 3.2svn). Mostly were: warning: private field 'fOneDim' is not
 used [-Wunused-private-field]

git-svn-id: http://root.cern.ch/svn/root/trunk@48467 27541ba8-7e3a-0410-8455-c3a389f83636
---
 graf2d/asimage/src/libAfterImage/afterbase.c  |   3 +-
 hist/hbook/src/THbookFile.cxx                 |   6 +-
 main/src/h2root.cxx                           |   2 +-
 math/foam/inc/TFoamSampler.h                  |   2 +-
 math/foam/src/TFoamSampler.cxx                | 108 ++++++------
 math/mathmore/inc/Math/GSLNLSMinimizer.h      | 163 +++++++++---------
 .../inc/Minuit2/FumiliStandardChi2FCN.h       |  84 +++++----
 .../FumiliStandardMaximumLikelihoodFCN.h      |  50 +++---
 8 files changed, 203 insertions(+), 215 deletions(-)

diff --git a/graf2d/asimage/src/libAfterImage/afterbase.c b/graf2d/asimage/src/libAfterImage/afterbase.c
index b9dc251f69e..d6581bc6a64 100644
--- a/graf2d/asimage/src/libAfterImage/afterbase.c
+++ b/graf2d/asimage/src/libAfterImage/afterbase.c
@@ -705,7 +705,8 @@ double asim_parse_math(const char* str, char** endptr, double size) {
 				num = asim_parse_math(str + 1, &ptr, size);
             else if (*str == '$') 
 			{
-            	for (ptr = (char*)str + 1 ; *ptr && !isspace(*ptr) && *ptr != '+' && *ptr != '-' && *ptr != '*' && *ptr != '!' && *ptr != '/' && *ptr != ')' ; ptr++);
+            	for (ptr = (char*)str + 1 ; *ptr && !isspace(*ptr) && *ptr != '+' && *ptr != '-' && *ptr != '*' && *ptr != '!' && *ptr != '/' && *ptr != ')' ; ptr++)
+            	   ;
                	num = asim_asxml_var_nget((char*)str + 1, ptr - (str + 1));
             }else 
 				num = strtod(str, &ptr);
diff --git a/hist/hbook/src/THbookFile.cxx b/hist/hbook/src/THbookFile.cxx
index e374e44b4ee..d0bf42652a2 100644
--- a/hist/hbook/src/THbookFile.cxx
+++ b/hist/hbook/src/THbookFile.cxx
@@ -284,7 +284,7 @@ THbookFile::THbookFile(const char *fname, Int_t lrecl)
    char topdir[20];
    snprintf(topdir,19,"lun%d",fLun);
 
-   Int_t ier;
+   Int_t ier = 0;
 #ifndef WIN32
    hropen(fLun,PASSCHAR(topdir),PASSCHAR(fname),PASSCHAR("p"),lrecl,ier,strlen(topdir),strlen(fname),1);
 #else
@@ -885,7 +885,7 @@ TObject *THbookFile::ConvertProfile(Int_t id)
 
    const Int_t kCON1 = 9;
    Int_t i;
-   Float_t x;
+   Float_t x = 0.0;
    Float_t y = 0.5*(ymin+ymax);
    for (i=1;i<=ncx;i++) {
       Int_t n = Int_t(q[ln+i]);
@@ -974,7 +974,7 @@ TObject *THbookFile::Convert2D(Int_t id)
    Int_t lw = lq[lcont];
    if (lw) h2->Sumw2();
 
-   Float_t x,y;
+   Float_t x = 0.0, y = 0.0;
    for (Int_t j=0;j<=ncy+1;j++) {
       for (Int_t i=0;i<=ncx+1;i++) {
          hijxy(id,i,j,x,y);
diff --git a/main/src/h2root.cxx b/main/src/h2root.cxx
index bf3c8f33af1..c8a9b7b696d 100644
--- a/main/src/h2root.cxx
+++ b/main/src/h2root.cxx
@@ -521,7 +521,7 @@ void convert_2d(Int_t id)
    Int_t lw = lq[lcont];
    if (lw) h2->Sumw2();
 
-   Float_t x,y;
+   Float_t x = 0.0, y = 0.0;
    for (Int_t j=0;j<=ncy+1;j++) {
       for (Int_t i=0;i<=ncx+1;i++) {
          hijxy(id,i,j,x,y);
diff --git a/math/foam/inc/TFoamSampler.h b/math/foam/inc/TFoamSampler.h
index 409cc29e17a..7b30c327587 100644
--- a/math/foam/inc/TFoamSampler.h
+++ b/math/foam/inc/TFoamSampler.h
@@ -123,7 +123,7 @@ protected:
 private: 
 
    // private member
-   bool                              fOneDim;      // flag to indicate if the function is 1 dimension
+//    bool                              fOneDim;      // flag to indicate if the function is 1 dimension
 //    bool                              fHasMode;     // flag to indicate if a mode is set
 //    bool                              fHasArea;     // flag to indicate if a area is set
 //    double                            fMode;        // mode of dist
diff --git a/math/foam/src/TFoamSampler.cxx b/math/foam/src/TFoamSampler.cxx
index f7265897fe1..5f1c11dad7e 100644
--- a/math/foam/src/TFoamSampler.cxx
+++ b/math/foam/src/TFoamSampler.cxx
@@ -26,13 +26,13 @@
 #include <cassert>
 #include <cmath>
 
-class FoamDistribution : public TFoamIntegrand { 
+class FoamDistribution : public TFoamIntegrand {
 
 public:
 
-   FoamDistribution(const ROOT::Math::IMultiGenFunction & f, const ROOT::Fit::DataRange & range) : 
-      fFunc(f), 
-      fX(std::vector<double>(f.NDim() ) ), 
+   FoamDistribution(const ROOT::Math::IMultiGenFunction & f, const ROOT::Fit::DataRange & range) :
+      fFunc(f),
+      fX(std::vector<double>(f.NDim() ) ),
       fMinX(std::vector<double>(f.NDim() ) ),
       fDeltaX(std::vector<double>(f.NDim() ) )
    {
@@ -41,33 +41,33 @@ public:
       for (unsigned int i = 0; i < range.NDim(); ++i) {
          if (range.Size(i) == 0)
             Error("FoamDistribution","Range is not set for coordinate dim %d",i);
-         else if (range.Size(i)>1) 
+         else if (range.Size(i)>1)
             Warning("FoamDistribution","Using only first range in coordinate dim %d",i);
 
-         std::pair<double,double> r = range(i); 
+         std::pair<double,double> r = range(i);
          fMinX[i] = r.first;
-         fDeltaX[i] = r.second - r.first; 
+         fDeltaX[i] = r.second - r.first;
       }
-   } 
+   }
    // in principle function does not need to be cloned
 
    virtual double Density(int ndim, double * x) {
       assert(ndim == (int) fFunc.NDim() );
       for (int i = 0; i < ndim; ++i)
-         fX[i] = fMinX[i] + x[i] * fDeltaX[i]; 
+         fX[i] = fMinX[i] + x[i] * fDeltaX[i];
 
       return (fFunc)(&fX[0]);
    }
 
    double  MinX(unsigned int i) { return fMinX[i]; }
    double  DeltaX(unsigned int i) { return fDeltaX[i]; }
-              
+
 private:
 
    const ROOT::Math::IMultiGenFunction & fFunc;
-   std::vector<double> fX; 
-   std::vector<double> fMinX; 
-   std::vector<double> fDeltaX; 
+   std::vector<double> fX;
+   std::vector<double> fMinX;
+   std::vector<double> fDeltaX;
 
 };
 
@@ -80,12 +80,12 @@ ClassImp(TFoamSampler)
 /**
    TFoamSampler class
    class implementing  the ROOT::Math::DistSampler interface using FOAM
-   for sampling arbitrary distributions. 
+   for sampling arbitrary distributions.
 
 
 */
-TFoamSampler::TFoamSampler() : ROOT::Math::DistSampler(), 
-   fOneDim(false), 
+TFoamSampler::TFoamSampler() : ROOT::Math::DistSampler(),
+//    fOneDim(false)
 //    fDiscrete(false),
 //    fHasMode(false), fHasArea(false),
 //    fMode(0), fArea(0),
@@ -96,20 +96,20 @@ TFoamSampler::TFoamSampler() : ROOT::Math::DistSampler(),
 
 TFoamSampler::~TFoamSampler() {
    assert(fFoam != 0);
-   delete fFoam; 
-   if (fFoamDist) delete fFoamDist; 
+   delete fFoam;
+   if (fFoamDist) delete fFoamDist;
 }
 
-bool TFoamSampler::Init(const char *) { 
+bool TFoamSampler::Init(const char *) {
 
    // initialize using default options
    ROOT::Math::DistSamplerOptions opt(0);
-   ROOT::Math::IOptions * foamOpt  = ROOT::Math::DistSamplerOptions::FindDefault("Foam"); 
-   if (foamOpt) opt.SetExtraOptions(*foamOpt); 
+   ROOT::Math::IOptions * foamOpt  = ROOT::Math::DistSamplerOptions::FindDefault("Foam");
+   if (foamOpt) opt.SetExtraOptions(*foamOpt);
    return Init(opt);
 }
 
-bool TFoamSampler::Init(const ROOT::Math::DistSamplerOptions & opt) { 
+bool TFoamSampler::Init(const ROOT::Math::DistSamplerOptions & opt) {
    // initialize foam classes using the given algorithm
    assert (fFoam != 0 );
    if (NDim() == 0)  {
@@ -117,24 +117,24 @@ bool TFoamSampler::Init(const ROOT::Math::DistSamplerOptions & opt) {
       return false;
    }
 
-   // initialize the foam 
+   // initialize the foam
    fFoam->SetkDim(NDim() );
 
-   // initialize random number 
+   // initialize random number
    if (!GetRandom()) SetRandom(gRandom);
 
-   // create TFoamIntegrand class 
-   if (fFoamDist) delete fFoamDist; 
+   // create TFoamIntegrand class
+   if (fFoamDist) delete fFoamDist;
    fFoamDist = new FoamDistribution(ParentPdf(),PdfRange());
 
    fFoam->SetRho(fFoamDist);
    // set print level
    fFoam->SetChat(opt.PrintLevel());
 
-   // get extra options 
-   ROOT::Math::IOptions * fopt = opt.ExtraOptions(); 
-   if (fopt) { 
-      int nval = 0; 
+   // get extra options
+   ROOT::Math::IOptions * fopt = opt.ExtraOptions();
+   if (fopt) {
+      int nval = 0;
       double fval = 0;
       if (fopt->GetIntValue("nCells", nval) ) fFoam->SetnCells(nval);
       if (fopt->GetIntValue("nCell1D", nval) && NDim() ==1) fFoam->SetnCells(nval);
@@ -154,55 +154,55 @@ bool TFoamSampler::Init(const ROOT::Math::DistSamplerOptions & opt) {
    fFoam->Initialize();
 
    return true;
-      
+
 }
 
 
-void TFoamSampler::SetFunction(TF1 * pdf) { 
-   // set function from a TF1 pointer 
+void TFoamSampler::SetFunction(TF1 * pdf) {
+   // set function from a TF1 pointer
    SetFunction<TF1>(*pdf, pdf->GetNdim());
-} 
+}
 
-void TFoamSampler::SetRandom(TRandom * r) { 
+void TFoamSampler::SetRandom(TRandom * r) {
    // set random generator (must be called before Init to have effect)
-   fFoam->SetPseRan(r); 
-} 
+   fFoam->SetPseRan(r);
+}
 
-void TFoamSampler::SetSeed(unsigned int seed) { 
+void TFoamSampler::SetSeed(unsigned int seed) {
    // set random generator seed (must be called before Init to have effect)
    TRandom * r = fFoam->GetPseRan();
    if (r) r->SetSeed(seed);
-} 
+}
 
-TRandom * TFoamSampler::GetRandom() { 
-   // get random generator used 
-   return  fFoam->GetPseRan(); 
-} 
+TRandom * TFoamSampler::GetRandom() {
+   // get random generator used
+   return  fFoam->GetPseRan();
+}
 
-// double TFoamSampler::Sample1D() { 
+// double TFoamSampler::Sample1D() {
 //    // sample 1D distributions
-//    return (fDiscrete) ? (double) fFoam->SampleDiscr() : fFoam->Sample(); 
+//    return (fDiscrete) ? (double) fFoam->SampleDiscr() : fFoam->Sample();
 // }
 
-bool TFoamSampler::Sample(double * x) { 
+bool TFoamSampler::Sample(double * x) {
    // sample multi-dim distributions
 
    fFoam->MakeEvent();
    fFoam->GetMCvect(x);
-   // adjust for the range   
-   for (unsigned int i = 0; i < NDim(); ++i) 
+   // adjust for the range
+   for (unsigned int i = 0; i < NDim(); ++i)
       x[i] = ( (FoamDistribution*)fFoamDist)->MinX(i) + ( ( (FoamDistribution*) fFoamDist)->DeltaX(i))*x[i];
 
-   return true; 
-} 
+   return true;
+}
 
 
 bool TFoamSampler::SampleBin(double prob, double & value, double *error) {
    // sample a bin according to Poisson statistics
 
-   TRandom * r = GetRandom(); 
-   if (!r) return false; 
-   value = r->Poisson(prob); 
+   TRandom * r = GetRandom();
+   if (!r) return false;
+   value = r->Poisson(prob);
    if (error) *error = std::sqrt(value);
-   return true; 
+   return true;
 }
diff --git a/math/mathmore/inc/Math/GSLNLSMinimizer.h b/math/mathmore/inc/Math/GSLNLSMinimizer.h
index 6e5abb1d24f..9fa2ed2ff8e 100644
--- a/math/mathmore/inc/Math/GSLNLSMinimizer.h
+++ b/math/mathmore/inc/Math/GSLNLSMinimizer.h
@@ -55,88 +55,88 @@
 #include <map>
 #include <string>
 
-namespace ROOT { 
+namespace ROOT {
 
-   namespace Math { 
+   namespace Math {
 
-      class GSLMultiFit; 
+      class GSLMultiFit;
 
 
 //________________________________________________________________________________
-/** 
-    LSResidualFunc class description. 
+/**
+    LSResidualFunc class description.
     Internal class used for accessing the residuals of the Least Square function
-    and their derivates which are estimated numerically using GSL numerical derivation. 
-    The class contains a pointer to the fit method function and an index specifying 
+    and their derivates which are estimated numerically using GSL numerical derivation.
+    The class contains a pointer to the fit method function and an index specifying
     the i-th residual and wraps it in a multi-dim gradient function interface
-    ROOT::Math::IGradientFunctionMultiDim. 
+    ROOT::Math::IGradientFunctionMultiDim.
     The class is used by ROOT::Math::GSLNLSMinimizer (GSL non linear least square fitter)
 
     @ingroup MultiMin
 */
-class LSResidualFunc : public IMultiGradFunction { 
-public: 
+class LSResidualFunc : public IMultiGradFunction {
+public:
 
-   //default ctor (required by CINT) 
+   //default ctor (required by CINT)
    LSResidualFunc() : fIndex(0), fChi2(0)
    {}
 
 
-   LSResidualFunc(const ROOT::Math::FitMethodFunction & func, unsigned int i) : 
-      fIndex(i), 
-      fChi2(&func), 
+   LSResidualFunc(const ROOT::Math::FitMethodFunction & func, unsigned int i) :
+      fIndex(i),
+      fChi2(&func),
       fX2(std::vector<double>(func.NDim() ) )
    {}
 
 
    // copy ctor
    LSResidualFunc(const LSResidualFunc & rhs) :
-      IMultiGenFunction(), 
-      IMultiGradFunction() 
-   { 
+      IMultiGenFunction(),
+      IMultiGradFunction()
+   {
       operator=(rhs);
-   } 
+   }
 
    // assignment
-   LSResidualFunc & operator= (const LSResidualFunc & rhs) 
-   { 
+   LSResidualFunc & operator= (const LSResidualFunc & rhs)
+   {
       fIndex = rhs.fIndex;
-      fChi2 = rhs.fChi2; 
+      fChi2 = rhs.fChi2;
       fX2 = rhs.fX2;
       return *this;
-   } 
+   }
 
-   IMultiGenFunction * Clone() const { 
-      return new LSResidualFunc(*fChi2,fIndex); 
+   IMultiGenFunction * Clone() const {
+      return new LSResidualFunc(*fChi2,fIndex);
    }
 
    unsigned int NDim() const { return fChi2->NDim(); }
 
-   void Gradient( const double * x, double * g) const { 
-      double f0 = 0; 
+   void Gradient( const double * x, double * g) const {
+      double f0 = 0;
       FdF(x,f0,g);
    }
 
-   void FdF (const double * x, double & f, double * g) const { 
-      unsigned int n = NDim(); 
+   void FdF (const double * x, double & f, double * g) const {
+      unsigned int n = NDim();
       std::copy(x,x+n,fX2.begin());
       const double kEps = 1.0E-4;
-      f = DoEval(x); 
-      for (unsigned int i = 0; i < n; ++i) { 
+      f = DoEval(x);
+      for (unsigned int i = 0; i < n; ++i) {
          fX2[i] += kEps;
          g[i] =  ( DoEval(&fX2.front()) - f )/kEps;
          fX2[i] = x[i];
       }
-   } 
-   
+   }
 
-private: 
 
-   double DoEval (const double * x) const { 
+private:
+
+   double DoEval (const double * x) const {
       return fChi2->DataElement(x, fIndex);
    }
-   
-   double DoDerivative(const double * x, unsigned int icoord) const { 
+
+   double DoDerivative(const double * x, unsigned int icoord) const {
       //return  ROOT::Math::Derivator::Eval(*this, x, icoord, 1E-8);
       std::copy(x,x+NDim(),fX2.begin());
       const double kEps = 1.0E-4;
@@ -144,117 +144,114 @@ private:
       return ( DoEval(&fX2.front()) - DoEval(x) )/kEps;
    }
 
-   unsigned int fIndex; 
-   const ROOT::Math::FitMethodFunction * fChi2; 
+   unsigned int fIndex;
+   const ROOT::Math::FitMethodFunction * fChi2;
    mutable std::vector<double> fX2;  // cached vector
 };
 
 
 //_____________________________________________________________________________________________________
-/** 
+/**
    GSLNLSMinimizer class for Non Linear Least Square fitting
-   It Uses the Levemberg-Marquardt algorithm from 
+   It Uses the Levemberg-Marquardt algorithm from
    <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_002dSquares-Fitting.html">
    GSL Non Linear Least Square fitting</A>.
 
    @ingroup MultiMin
-*/ 
+*/
 class GSLNLSMinimizer : public  ROOT::Math::BasicMinimizer {
 
-public: 
+public:
 
-   /** 
+   /**
       Default constructor
-   */ 
-   GSLNLSMinimizer (int type = 0); 
+   */
+   GSLNLSMinimizer (int type = 0);
 
-   /** 
+   /**
       Destructor (no operations)
-   */ 
-   ~GSLNLSMinimizer ();  
+   */
+   ~GSLNLSMinimizer ();
 
 private:
    // usually copying is non trivial, so we make this unaccessible
 
-   /** 
+   /**
       Copy constructor
-   */ 
-   GSLNLSMinimizer(const GSLNLSMinimizer &) : ROOT::Math::BasicMinimizer() {} 
+   */
+   GSLNLSMinimizer(const GSLNLSMinimizer &) : ROOT::Math::BasicMinimizer() {}
 
-   /** 
+   /**
       Assignment operator
-   */ 
+   */
    GSLNLSMinimizer & operator = (const GSLNLSMinimizer & rhs)  {
       if (this == &rhs) return *this;  // time saving self-test
       return *this;
    }
 
-public: 
+public:
 
    /// set the function to minimize
-   virtual void SetFunction(const ROOT::Math::IMultiGenFunction & func); 
+   virtual void SetFunction(const ROOT::Math::IMultiGenFunction & func);
 
    /// set gradient the function to minimize
-   virtual void SetFunction(const ROOT::Math::IMultiGradFunction & func); 
+   virtual void SetFunction(const ROOT::Math::IMultiGradFunction & func);
+
 
- 
    /// method to perform the minimization
-   virtual  bool Minimize(); 
+   virtual  bool Minimize();
 
 
    /// return expected distance reached from the minimum
    virtual double Edm() const { return fEdm; } // not impl. }
 
 
-   /// return pointer to gradient values at the minimum 
-   virtual const double *  MinGradient() const; 
+   /// return pointer to gradient values at the minimum
+   virtual const double *  MinGradient() const;
 
-   /// number of function calls to reach the minimum 
-   virtual unsigned int NCalls() const { return (fChi2Func) ? fChi2Func->NCalls() : 0; } 
+   /// number of function calls to reach the minimum
+   virtual unsigned int NCalls() const { return (fChi2Func) ? fChi2Func->NCalls() : 0; }
 
-   /// number of free variables (real dimension of the problem) 
-   /// this is <= Function().NDim() which is the total 
-//   virtual unsigned int NFree() const { return fNFree; }  
+   /// number of free variables (real dimension of the problem)
+   /// this is <= Function().NDim() which is the total
+//   virtual unsigned int NFree() const { return fNFree; }
 
    /// minimizer provides error and error matrix
-   virtual bool ProvidesError() const { return true; } 
+   virtual bool ProvidesError() const { return true; }
 
-   /// return errors at the minimum 
+   /// return errors at the minimum
    virtual const double * Errors() const { return (fErrors.size() > 0) ? &fErrors.front() : 0; }
-//  { 
-//       static std::vector<double> err; 
+//  {
+//       static std::vector<double> err;
 //       err.resize(fDim);
-//       return &err.front(); 
+//       return &err.front();
 //    }
 
-   /** return covariance matrices elements 
+   /** return covariance matrices elements
        if the variable is fixed the matrix is zero
        The ordering of the variables is the same as in errors
-   */ 
+   */
    virtual double CovMatrix(unsigned int , unsigned int ) const;
 
    /// return covariance matrix status
    virtual int CovMatrixStatus() const;
 
-protected: 
+protected:
 
 
-private: 
-   
+private:
 
-   unsigned int fNFree;      // dimension of the internal function to be minimized 
+   unsigned int fNFree;      // dimension of the internal function to be minimized
    unsigned int fSize;        // number of fit points (residuals)
- 
 
-   ROOT::Math::GSLMultiFit * fGSLMultiFit;        // pointer to GSL multi fit solver 
+   ROOT::Math::GSLMultiFit * fGSLMultiFit;        // pointer to GSL multi fit solver
    const ROOT::Math::FitMethodFunction * fChi2Func;      // pointer to Least square function
-   
-   double fMinVal;                                // minimum function value
+
    double fEdm;                                   // edm value
    double fLSTolerance;                           // Line Search Tolerance
-   std::vector<double> fValues;           
+   std::vector<double> fValues;
    std::vector<double> fErrors;
-   std::vector<double> fCovMatrix;              //  cov matrix (stored as cov[ i * dim + j] 
+   std::vector<double> fCovMatrix;              //  cov matrix (stored as cov[ i * dim + j]
    std::vector<double> fSteps;
    std::vector<std::string> fNames;
    std::vector<LSResidualFunc> fResiduals;   //! transient Vector of the residual functions
@@ -263,7 +260,7 @@ private:
    std::map< unsigned int, std::pair<double, double> > fBounds; // map specifying the bound using as key the parameter index
 
 
-}; 
+};
 
    } // end namespace Math
 
diff --git a/math/minuit2/inc/Minuit2/FumiliStandardChi2FCN.h b/math/minuit2/inc/Minuit2/FumiliStandardChi2FCN.h
index 1909ff4f058..fbf7fb10d12 100644
--- a/math/minuit2/inc/Minuit2/FumiliStandardChi2FCN.h
+++ b/math/minuit2/inc/Minuit2/FumiliStandardChi2FCN.h
@@ -1,5 +1,5 @@
 // @(#)root/minuit2:$Id$
-// Authors: M. Winkler, F. James, L. Moneta, A. Zsenei   2003-2005  
+// Authors: M. Winkler, F. James, L. Moneta, A. Zsenei   2003-2005
 
 /**********************************************************************
  *                                                                    *
@@ -10,7 +10,7 @@
 #ifndef ROOT_Minuit2_FumiliStandardChi2FCN
 #define ROOT_Minuit2_FumiliStandardChi2FCN
 
- 
+
 #include "Minuit2/FumiliChi2FCN.h"
 #include "Minuit2/ParametricFunction.h"
 #include <assert.h>
@@ -26,8 +26,8 @@ namespace ROOT {
 /**
 
 Class implementing the standard chi square function, which
-is the sum of the squares of the figures-of-merit calculated for each measurement 
-point, the individual figures-of-merit being: (the Value predicted by the 
+is the sum of the squares of the figures-of-merit calculated for each measurement
+point, the individual figures-of-merit being: (the Value predicted by the
 model-measured Value)/standard deviation.
 
 @author Andras Zsenei and Lorenzo Moneta, Creation date: 31 Aug 2004
@@ -46,9 +46,9 @@ public:
 
 
   /**
-     
+
   Constructor which initializes chi square function for one-dimensional model function
-  
+
   @param modelFCN the model function used for describing the data.
 
   @param meas vector containing the measured values.
@@ -56,7 +56,7 @@ public:
   @param pos vector containing the x values corresponding to the
   measurements
 
-  @param mvar vector containing the variances corresponding to each 
+  @param mvar vector containing the variances corresponding to each
   measurement (where the variance equals the standard deviation squared).
   If the variances are zero, a Value of 1 is used (as it is done in ROOT/PAW)
 
@@ -64,36 +64,36 @@ public:
 
   FumiliStandardChi2FCN(const ParametricFunction& modelFCN, const std::vector<double>& meas,
 	   const std::vector<double>& pos,
-	   const std::vector<double>& mvar) : 
-    fErrorDef(1.) { //this->fModelFCN = &modelFunction; 
-    this->SetModelFunction(modelFCN); 
+	   const std::vector<double>& mvar)
+    { //this->fModelFCN = &modelFunction;
+    this->SetModelFunction(modelFCN);
 
     assert(meas.size() == pos.size());
     assert(meas.size() == mvar.size());
     fMeasurements = meas;
-    std::vector<double> x(1); 
-    unsigned int n = mvar.size(); 
+    std::vector<double> x(1);
+    unsigned int n = mvar.size();
     fPositions.reserve( n);
     // correct for variance == 0
     fInvErrors.resize(n);
-    for (unsigned int i = 0; i < n; ++i)  
-    { 
+    for (unsigned int i = 0; i < n; ++i)
+    {
       x[0] = pos[i];
       fPositions.push_back(x);
       // PAW/ROOT hack : use 1 for 0 entries bins
-      if (mvar[i] == 0) 
-	fInvErrors[i] = 1; 
-      else 
-	fInvErrors[i] = 1.0/std::sqrt(mvar[i]); 
+      if (mvar[i] == 0)
+	fInvErrors[i] = 1;
+      else
+	fInvErrors[i] = 1.0/std::sqrt(mvar[i]);
     }
 
   }
 
 
   /**
-     
+
   Constructor which initializes the multi-dimensional model function.
-  
+
   @param modelFCN the model function used for describing the data.
 
   @param meas vector containing the measured values.
@@ -101,7 +101,7 @@ public:
   @param pos vector containing the x values corresponding to the
   measurements
 
-  @param mvar vector containing the variances corresponding to each 
+  @param mvar vector containing the variances corresponding to each
   measurement (where the variance equals the standard deviation squared).
   If the variances are zero, a Value of 1 is used (as it is done in ROOT/PAW)
 
@@ -109,24 +109,24 @@ public:
 
   FumiliStandardChi2FCN(const ParametricFunction& modelFCN, const std::vector<double>& meas,
 	   const std::vector<std::vector<double> >& pos,
-	   const std::vector<double>& mvar) : 
-    fErrorDef(1.) { //this->fModelFCN = &modelFunction; 
-    this->SetModelFunction(modelFCN); 
+	   const std::vector<double>& mvar)
+    { //this->fModelFCN = &modelFunction;
+    this->SetModelFunction(modelFCN);
 
     assert(meas.size() == pos.size());
     assert(meas.size() == mvar.size());
     fMeasurements = meas;
     fPositions = pos;
     // correct for variance == 0
-    unsigned int n = mvar.size(); 
+    unsigned int n = mvar.size();
     fInvErrors.resize(n);
-    for (unsigned int i = 0; i < n; ++i)  
-    { 
+    for (unsigned int i = 0; i < n; ++i)
+    {
       // PAW/ROOT hack : use 1 for 0 entries bins
-      if (mvar[i] == 0) 
-	fInvErrors[i] = 1; 
-      else 
-	fInvErrors[i] = 1.0/std::sqrt(mvar[i]); 
+      if (mvar[i] == 0)
+	fInvErrors[i] = 1;
+      else
+	fInvErrors[i] = 1.0/std::sqrt(mvar[i]);
     }
 
   }
@@ -142,16 +142,16 @@ public:
 
   /**
 
-  Evaluates the model function for the different measurement points and 
+  Evaluates the model function for the different measurement points and
   the Parameter values supplied, calculates a figure-of-merit for each
   measurement and returns a vector containing the result of this
-  evaluation. The figure-of-merit is (Value predicted by the model 
+  evaluation. The figure-of-merit is (Value predicted by the model
   function-measured Value)/standard deviation.
 
   @param par vector of Parameter values to feed to the model function.
 
-  @return A vector containing the figures-of-merit for the model function evaluated 
-  for each set of measurements.  
+  @return A vector containing the figures-of-merit for the model function evaluated
+  for each set of measurements.
 
   \todo What to do when the variances are 0???!! (right now just pushes back 0...)
 
@@ -176,7 +176,7 @@ public:
 
   /**
 
-  Accessor to the number of measurements used for calculating 
+  Accessor to the number of measurements used for calculating
   the chi-square.
 
   @return the number of measurements.
@@ -187,16 +187,16 @@ public:
 
 
   /**
-  
+
   Evaluate function Value, Gradient and Hessian using Fumili approximation, for values of parameters p
-  The resul is cached inside and is return from the FumiliFCNBase::Value ,  FumiliFCNBase::Gradient and 
-  FumiliFCNBase::Hessian methods 
+  The resul is cached inside and is return from the FumiliFCNBase::Value ,  FumiliFCNBase::Gradient and
+  FumiliFCNBase::Hessian methods
 
   @param par vector of parameters
 
   **/
 
-  virtual  void EvaluateAll( const std::vector<double> & par ); 
+  virtual  void EvaluateAll( const std::vector<double> & par );
 
 
  private:
@@ -206,10 +206,6 @@ public:
   // support multi dim coordinates
   std::vector<std::vector<double> > fPositions;
   std::vector<double> fInvErrors;
-  double fErrorDef;
-  
- 
-
 };
 
   }  // namespace Minuit2
diff --git a/math/minuit2/inc/Minuit2/FumiliStandardMaximumLikelihoodFCN.h b/math/minuit2/inc/Minuit2/FumiliStandardMaximumLikelihoodFCN.h
index ab6ea60604c..4bd2c68373c 100644
--- a/math/minuit2/inc/Minuit2/FumiliStandardMaximumLikelihoodFCN.h
+++ b/math/minuit2/inc/Minuit2/FumiliStandardMaximumLikelihoodFCN.h
@@ -1,5 +1,5 @@
 // @(#)root/minuit2:$Id$
-// Authors: M. Winkler, F. James, L. Moneta, A. Zsenei   2003-2005  
+// Authors: M. Winkler, F. James, L. Moneta, A. Zsenei   2003-2005
 
 /**********************************************************************
  *                                                                    *
@@ -24,7 +24,7 @@ namespace ROOT {
 
 /**
 
-Class implementing the Elements member function for the standard 
+Class implementing the Elements member function for the standard
 maximum likelihood method.
 
 @author Andras Zsenei and Lorenzo Moneta, Creation date: 4 Sep 2004
@@ -41,9 +41,9 @@ public:
 
 
   /**
-     
+
   Constructor which initializes the measurement points for the one dimensional model function.
-  
+
   @param modelFCN the model function used for describing the data.
 
   @param pos vector containing the x values corresponding to the
@@ -51,26 +51,25 @@ public:
 
   */
 
-  FumiliStandardMaximumLikelihoodFCN(const ParametricFunction& modelFCN, 
-				     const std::vector<double>& pos) : 
-    fErrorDef(0.5) 
+  FumiliStandardMaximumLikelihoodFCN(const ParametricFunction& modelFCN,
+				     const std::vector<double>& pos)
   {
-    this->SetModelFunction(modelFCN); 
-    unsigned int n = pos.size(); 
+    this->SetModelFunction(modelFCN);
+    unsigned int n = pos.size();
     fPositions.reserve( n );
     std::vector<double> x(1);
-    for (unsigned int i = 0; i < n; ++i) { 
+    for (unsigned int i = 0; i < n; ++i) {
       x[0] = pos[i];
-      fPositions.push_back(x);  
+      fPositions.push_back(x);
     }
   }
 
 
 
   /**
-     
+
   Constructor which initializes the measurement points for the multi dimensional model function.
-  
+
   @param modelFCN the model function used for describing the data.
 
   @param pos vector containing the x values corresponding to the
@@ -78,10 +77,9 @@ public:
 
   */
 
-  FumiliStandardMaximumLikelihoodFCN(const ParametricFunction& modelFCN, 
-				     const std::vector<std::vector<double> >& pos) : 
-    fErrorDef(0.5) {
-    this->SetModelFunction(modelFCN); 
+  FumiliStandardMaximumLikelihoodFCN(const ParametricFunction& modelFCN,
+				     const std::vector<std::vector<double> >& pos) {
+    this->SetModelFunction(modelFCN);
     fPositions = pos;
 
   }
@@ -96,13 +94,13 @@ public:
 
   /**
 
-  Evaluates the model function for the different measurement points and 
+  Evaluates the model function for the different measurement points and
   the Parameter values supplied.
 
   @param par vector of Parameter values to feed to the model function.
 
-  @return A vector containing the model function evaluated 
-  for each measurement point.  
+  @return A vector containing the model function evaluated
+  for each measurement point.
 
   */
 
@@ -126,7 +124,7 @@ public:
 
   /**
 
-  Accessor to the number of measurements used for calculating 
+  Accessor to the number of measurements used for calculating
   the maximum likelihood.
 
   @return the number of measurements.
@@ -136,10 +134,10 @@ public:
   virtual int GetNumberOfMeasurements() const;
 
   /**
-  
+
   Evaluate function Value, Gradient and Hessian using Fumili approximation, for values of parameters p
-  The resul is cached inside and is return from the FumiliFCNBase::Value ,  FumiliFCNBase::Gradient and 
-  FumiliFCNBase::Hessian methods 
+  The resul is cached inside and is return from the FumiliFCNBase::Value ,  FumiliFCNBase::Gradient and
+  FumiliFCNBase::Hessian methods
 
   @param par vector of parameters
 
@@ -151,10 +149,6 @@ public:
  private:
 
   std::vector<std::vector<double> > fPositions;
-  double fErrorDef;
-  
-    
-
 };
 
   }  // namespace Minuit2
-- 
GitLab