From 8e1a8268e2453dcf6afa6b53ae9bc2b46dbd6d20 Mon Sep 17 00:00:00 2001 From: Olivier Couet <olivier.couet@cern.ch> Date: Wed, 22 Jun 2016 13:21:17 +0200 Subject: [PATCH] - Apply patches suggested by Mattias Ellert - Remove trailing white spaces - Spell check --- math/mathcore/inc/Math/GaussIntegrator.h | 81 ++++++++++++------------ 1 file changed, 39 insertions(+), 42 deletions(-) diff --git a/math/mathcore/inc/Math/GaussIntegrator.h b/math/mathcore/inc/Math/GaussIntegrator.h index 5c5189b5f7b..d90b47dbf0d 100644 --- a/math/mathcore/inc/Math/GaussIntegrator.h +++ b/math/mathcore/inc/Math/GaussIntegrator.h @@ -48,7 +48,7 @@ public: /** Destructor */ virtual ~GaussIntegrator(); - /** Default Constructor. + /** Default Constructor. If the tolerance are not given, use default values specified in ROOT::Math::IntegratorOneDimOptions */ GaussIntegrator(double absTol = -1, double relTol = -1); @@ -92,31 +92,28 @@ public: Method: For any interval [a,b] we define g8(a,b) and g16(a,b) to be the 8-point and 16-point Gaussian quadrature approximations to - Begin_Latex - I = #int^{b}_{a} f(x)dx - End_Latex + \f[ + I = \int^{b}_{a} f(x)dx + \f] and define - Begin_Latex - r(a,b) = #frac{#||{g_{16}(a,b)-g_{8}(a,b)}}{1+#||{g_{16}(a,b)}} - End_Latex + \f[ + r(a,b) = \frac{\left|g_{16}(a,b)-g_{8}(a,b)\right|}{1+\left|g_{16}(a,b)\right|} + \f] Then, - Begin_Latex - G = #sum_{i=1}^{k}g_{16}(x_{i-1},x_{i}) - End_Latex - where, starting with x0 = A and finishing with xk = B, - the subdivision points xi(i=1,2,...) are given by - Begin_Latex - x_{i} = x_{i-1} + #lambda(B-x_{i-1}) - End_Latex - Begin_Latex - #lambda - End_Latex - is equal to the first member of the - sequence 1,1/2,1/4,... for which r(xi-1, xi) < EPS. + \f[ + G = \sum_{i=1}^{k}g_{16}(x_{i-1},x_{i}) + \f] + where, starting with \f$x_{0} = A\f$ and finishing with \f$x_{k} = B\f$, + the subdivision points \f$x_{i}(i=1,2,...)\f$ are given by + \f[ + x_{i} = x_{i-1} + \lambda(B-x_{i-1}) + \f] + \f$\lambda\f$ is equal to the first member of the + sequence 1,1/2,1/4,... for which \f$r(x_{i-1}, x_{i}) < EPS\f$. If, at any stage in the process of subdivision, the ratio - Begin_Latex - q = #||{#frac{x_{i}-x_{i-1}}{B-A}} - End_Latex + \f[ + q = \left|\frac{x_{i}-x_{i-1}}{B-A}\right| + \f] is so small that 1+0.005q is indistinguishable from 1 to machine accuracy, an error exit occurs with the function value set equal to zero. @@ -131,13 +128,13 @@ public: |I|>1, and a bound on the absolute error in the case |I|<1. More precisely, if k is the number of sub-intervals contributing to the approximation (see Method), and if - Begin_Latex - I_{abs} = #int^{B}_{A} #||{f(x)}dx - End_Latex + \f[ + I_{abs} = \int^{B}_{A} \left|f(x)\right|dx + \f] then the relation - Begin_Latex - #frac{#||{G-I}}{I_{abs}+k} < EPS - End_Latex + \f[ + \frac{\left|G-I\right|}{I_{abs}+k} < EPS + \f] will nearly always be true, provided the routine terminates without printing an error message. For functions f having no singularities in the closed interval [A,B] the accuracy will usually be much higher than @@ -156,9 +153,9 @@ public: /** Returns Integral of function on an infinite interval. This function computes, to an attempted specified accuracy, the value of the integral: - Begin_Latex - I = #int^{#infinity}_{-#infinity} f(x)dx - End_Latex + \f[ + I = \int^{\infty}_{-\infty} f(x)dx + \f] Usage: In any arithmetic expression, this function has the approximate value of the integral I. @@ -169,9 +166,9 @@ public: /** Returns Integral of function on an upper semi-infinite interval. This function computes, to an attempted specified accuracy, the value of the integral: - Begin_Latex - I = #int^{#infinity}_{A} f(x)dx - End_Latex + \f[ + I = \int^{\infty}_{A} f(x)dx + \f] Usage: In any arithmetic expression, this function has the approximate value of the integral I. @@ -183,9 +180,9 @@ public: /** Returns Integral of function on a lower semi-infinite interval. This function computes, to an attempted specified accuracy, the value of the integral: - Begin_Latex - I = #int^{B}_{#infinity} f(x)dx - End_Latex + \f[ + I = \int^{B}_{-\infty} f(x)dx + \f] Usage: In any arithmetic expression, this function has the approximate value of the integral I. @@ -216,7 +213,7 @@ public: private: /** - Integration surrugate method. Return integral of passed function in interval [a,b] + Integration surrogate method. Return integral of passed function in interval [a,b] Derived class (like GaussLegendreIntegrator) can re-implement this method to modify to use an improved algorithm */ @@ -228,14 +225,14 @@ protected: double fEpsRel; // Relative error. double fEpsAbs; // Absolute error. bool fUsedOnce; // Bool value to check if the function was at least called once. - double fLastResult; // Result from the last stimation. - double fLastError; // Error from the last stimation. + double fLastResult; // Result from the last estimation. + double fLastError; // Error from the last estimation. const IGenFunction* fFunction; // Pointer to function used. }; /** - Auxillary inner class for mapping infinite and semi-infinite integrals + Auxiliary inner class for mapping infinite and semi-infinite integrals */ class IntegrandTransform : public IGenFunction { public: -- GitLab