From 8b34a3b8e7481989ca751652c2633d63f3c61f7d Mon Sep 17 00:00:00 2001
From: Rene Brun <Rene.Brun@cern.ch>
Date: Mon, 27 Nov 2006 17:10:33 +0000
Subject: [PATCH] Fix coding conventions replacing enum NeuronType by
 ENeuronType, etc

git-svn-id: http://root.cern.ch/svn/root/trunk@16966 27541ba8-7e3a-0410-8455-c3a389f83636
---
 mlp/inc/TMultiLayerPerceptron.h   | 28 ++++++++++++++--------------
 mlp/inc/TNeuron.h                 | 10 +++++-----
 mlp/src/TMultiLayerPerceptron.cxx | 14 +++++++-------
 mlp/src/TNeuron.cxx               |  6 +++---
 tmva/src/MethodTMlpANN.cxx        |  6 +++---
 5 files changed, 32 insertions(+), 32 deletions(-)

diff --git a/mlp/inc/TMultiLayerPerceptron.h b/mlp/inc/TMultiLayerPerceptron.h
index 0c23a108e56..f5fbf34a3b5 100644
--- a/mlp/inc/TMultiLayerPerceptron.h
+++ b/mlp/inc/TMultiLayerPerceptron.h
@@ -1,4 +1,4 @@
-// @(#)root/mlp:$Name:  $:$Id: TMultiLayerPerceptron.h,v 1.10 2006/01/09 15:47:30 brun Exp $
+// @(#)root/mlp:$Name:  $:$Id: TMultiLayerPerceptron.h,v 1.11 2006/05/26 15:13:02 rdm Exp $
 // Author: Christophe.Delaere@cern.ch   20/07/03
 
 /*************************************************************************
@@ -59,31 +59,31 @@ class TMultiLayerPerceptron : public TObject {
  friend class TMLPAnalyzer;
 
  public:
-   enum LearningMethod { kStochastic, kBatch, kSteepestDescent,
-                         kRibierePolak, kFletcherReeves, kBFGS };
-   enum DataSet { kTraining, kTest };
+   enum ELearningMethod { kStochastic, kBatch, kSteepestDescent,
+                          kRibierePolak, kFletcherReeves, kBFGS };
+   enum EDataSet { kTraining, kTest };
    TMultiLayerPerceptron();
    TMultiLayerPerceptron(const char* layout, TTree* data = 0,
                          const char* training = "Entry$%2==0",
                          const char* test = "",
-                         TNeuron::NeuronType type = TNeuron::kSigmoid,
+                         TNeuron::ENeuronType type = TNeuron::kSigmoid,
                          const char* extF = "", const char* extD  = "");
    TMultiLayerPerceptron(const char* layout,
                          const char* weight, TTree* data = 0,
                          const char* training = "Entry$%2==0",
                          const char* test = "",
-                         TNeuron::NeuronType type = TNeuron::kSigmoid,
+                         TNeuron::ENeuronType type = TNeuron::kSigmoid,
                          const char* extF = "", const char* extD  = "");
    TMultiLayerPerceptron(const char* layout, TTree* data,
                          TEventList* training,
                          TEventList* test,
-                         TNeuron::NeuronType type = TNeuron::kSigmoid,
+                         TNeuron::ENeuronType type = TNeuron::kSigmoid,
                          const char* extF = "", const char* extD  = "");
    TMultiLayerPerceptron(const char* layout,
                          const char* weight, TTree* data,
                          TEventList* training,
                          TEventList* test,
-                         TNeuron::NeuronType type = TNeuron::kSigmoid,
+                         TNeuron::ENeuronType type = TNeuron::kSigmoid,
                          const char* extF = "", const char* extD  = "");
    virtual ~TMultiLayerPerceptron();
    void SetData(TTree*);
@@ -91,12 +91,12 @@ class TMultiLayerPerceptron : public TObject {
    void SetTestDataSet(TEventList* test);
    void SetTrainingDataSet(const char* train);
    void SetTestDataSet(const char* test);
-   void SetLearningMethod(TMultiLayerPerceptron::LearningMethod method);
+   void SetLearningMethod(TMultiLayerPerceptron::ELearningMethod method);
    void SetEventWeight(const char*);
    void Train(Int_t nEpoch, Option_t* option = "text");
    Double_t Result(Int_t event, Int_t index = 0) const;
    Double_t GetError(Int_t event) const;
-   Double_t GetError(TMultiLayerPerceptron::DataSet set) const;
+   Double_t GetError(TMultiLayerPerceptron::EDataSet set) const;
    void ComputeDEDw() const;
    void Randomize() const;
    void SetEta(Double_t eta);
@@ -112,7 +112,7 @@ class TMultiLayerPerceptron : public TObject {
    inline Double_t GetTau()      const { return fTau; }
    inline Int_t GetReset()       const { return fReset; }
    inline TString GetStructure() const { return fStructure; }
-   inline TNeuron::NeuronType GetType() const { return fType; }
+   inline TNeuron::ENeuronType GetType() const { return fType; }
    void DrawResult(Int_t index = 0, Option_t* option = "test") const;
    void DumpWeights(Option_t* filename = "-") const;
    void LoadWeights(Option_t* filename = "");
@@ -155,13 +155,13 @@ class TMultiLayerPerceptron : public TObject {
    TObjArray fSynapses;            // Collection of all the synapses in the network
    TString fStructure;             // String containing the network structure
    TString fWeight;                // String containing the event weight
-   TNeuron::NeuronType fType;      // Type of hidden neurons
-   TNeuron::NeuronType fOutType;   // Type of output neurons
+   TNeuron::ENeuronType fType;     // Type of hidden neurons
+   TNeuron::ENeuronType fOutType;  // Type of output neurons
    TString fextF;                  // String containing the function name
    TString fextD;                  // String containing the derivative name
    TEventList *fTraining;          //! EventList defining the events in the training dataset
    TEventList *fTest;              //! EventList defining the events in the test dataset
-   LearningMethod fLearningMethod; //! The Learning Method
+   ELearningMethod fLearningMethod; //! The Learning Method
    TTreeFormula* fEventWeight;     //! formula representing the event weight
    TTreeFormulaManager* fManager;  //! TTreeFormulaManager for the weight and neurons
    Double_t fEta;                  //! Eta - used in stochastic minimisation - Default=0.1
diff --git a/mlp/inc/TNeuron.h b/mlp/inc/TNeuron.h
index bf6a8acecb2..dbfedc9a77e 100644
--- a/mlp/inc/TNeuron.h
+++ b/mlp/inc/TNeuron.h
@@ -1,4 +1,4 @@
-// @(#)root/mlp:$Name:  $:$Id: TNeuron.h,v 1.9 2006/01/09 15:47:30 brun Exp $
+// @(#)root/mlp:$Name:  $:$Id: TNeuron.h,v 1.10 2006/01/09 18:05:57 pcanal Exp $
 // Author: Christophe.Delaere@cern.ch   20/07/03
 
 /*************************************************************************
@@ -49,9 +49,9 @@ class TNeuron : public TNamed {
    friend class TSynapse;
 
  public:
-   enum NeuronType { kOff, kLinear, kSigmoid, kTanh, kGauss, kSoftmax, kExternal };
+   enum ENeuronType { kOff, kLinear, kSigmoid, kTanh, kGauss, kSoftmax, kExternal };
 
-   TNeuron(NeuronType type = kSigmoid, 
+   TNeuron(ENeuronType type = kSigmoid, 
            const char* name = "", const char* title = "", 
            const char* extF = "", const char* extD  = "" );
    virtual ~ TNeuron() {}
@@ -66,7 +66,7 @@ class TNeuron : public TNamed {
    Double_t GetTarget() const;
    Double_t GetDeDw() const;
    Double_t GetBranch() const;
-   NeuronType GetType() const;
+   ENeuronType GetType() const;
    void SetWeight(Double_t w);
    inline Double_t GetWeight() const { return fWeight; }
    void SetNormalisation(Double_t mean, Double_t RMS);
@@ -89,7 +89,7 @@ class TNeuron : public TNamed {
    TObjArray flayer;      // pointers to the current level in a network (neurons, not synapses)
    Double_t fWeight;      // weight used for computation
    Double_t fNorm[2];     // normalisation to mean=0, RMS=1.
-   NeuronType fType;      // neuron type
+   ENeuronType fType;     // neuron type
    TFormula* fExtF;       // function   (external mode)
    TFormula* fExtD;       // derivative (external mode)
    //buffers
diff --git a/mlp/src/TMultiLayerPerceptron.cxx b/mlp/src/TMultiLayerPerceptron.cxx
index 9f58c86beee..f5893188ead 100644
--- a/mlp/src/TMultiLayerPerceptron.cxx
+++ b/mlp/src/TMultiLayerPerceptron.cxx
@@ -1,4 +1,4 @@
-// @(#)root/mlp:$Name:  $:$Id: TMultiLayerPerceptron.cxx,v 1.37 2006/05/26 15:13:02 rdm Exp $
+// @(#)root/mlp:$Name:  $:$Id: TMultiLayerPerceptron.cxx,v 1.38 2006/10/08 15:28:01 brun Exp $
 // Author: Christophe.Delaere@cern.ch   20/07/03
 
 /*************************************************************************
@@ -306,7 +306,7 @@ TMultiLayerPerceptron::TMultiLayerPerceptron()
 TMultiLayerPerceptron::TMultiLayerPerceptron(const char * layout, TTree * data,
                                              TEventList * training,
                                              TEventList * test,
-                                             TNeuron::NeuronType type,
+                                             TNeuron::ENeuronType type,
                                              const char* extF, const char* extD)
 {
    // The network is described by a simple string:
@@ -363,7 +363,7 @@ TMultiLayerPerceptron::TMultiLayerPerceptron(const char * layout,
                                              const char * weight, TTree * data,
                                              TEventList * training,
                                              TEventList * test,
-                                             TNeuron::NeuronType type,
+                                             TNeuron::ENeuronType type,
                                              const char* extF, const char* extD)
 {
    // The network is described by a simple string:
@@ -418,7 +418,7 @@ TMultiLayerPerceptron::TMultiLayerPerceptron(const char * layout,
 TMultiLayerPerceptron::TMultiLayerPerceptron(const char * layout, TTree * data,
                                              const char * training,
                                              const char * test,
-                                             TNeuron::NeuronType type,
+                                             TNeuron::ENeuronType type,
                                              const char* extF, const char* extD)
 {
    // The network is described by a simple string:
@@ -483,7 +483,7 @@ TMultiLayerPerceptron::TMultiLayerPerceptron(const char * layout,
                                              const char * weight, TTree * data,
                                              const char * training,
                                              const char * test,
-                                             TNeuron::NeuronType type,
+                                             TNeuron::ENeuronType type,
                                              const char* extF, const char* extD)
 {
    // The network is described by a simple string:
@@ -635,7 +635,7 @@ void TMultiLayerPerceptron::SetTestDataSet(const char * test)
 }
 
 //______________________________________________________________________________
-void TMultiLayerPerceptron::SetLearningMethod(TMultiLayerPerceptron::LearningMethod method)
+void TMultiLayerPerceptron::SetLearningMethod(TMultiLayerPerceptron::ELearningMethod method)
 {
    // Sets the learning method.
    // Available methods are: kStochastic, kBatch,
@@ -1007,7 +1007,7 @@ Double_t TMultiLayerPerceptron::GetError(Int_t event) const
 }
 
 //______________________________________________________________________________
-Double_t TMultiLayerPerceptron::GetError(TMultiLayerPerceptron::DataSet set) const
+Double_t TMultiLayerPerceptron::GetError(TMultiLayerPerceptron::EDataSet set) const
 {
    // Error on the whole dataset
    TEventList *list =
diff --git a/mlp/src/TNeuron.cxx b/mlp/src/TNeuron.cxx
index 11ab7fecd84..b657b0ad5ad 100644
--- a/mlp/src/TNeuron.cxx
+++ b/mlp/src/TNeuron.cxx
@@ -1,4 +1,4 @@
-// @(#)root/mlp:$Name:  $:$Id: TNeuron.cxx,v 1.19 2006/05/12 08:19:02 brun Exp $
+// @(#)root/mlp:$Name:  $:$Id: TNeuron.cxx,v 1.20 2006/05/26 15:13:02 rdm Exp $
 // Author: Christophe.Delaere@cern.ch   20/07/03
 
 /*************************************************************************
@@ -45,7 +45,7 @@
 ClassImp(TNeuron)
 
 //______________________________________________________________________________
-TNeuron::TNeuron(TNeuron::NeuronType type /*= kSigmoid*/,
+TNeuron::TNeuron(TNeuron::ENeuronType type /*= kSigmoid*/,
                  const char* name /*= ""*/, const char* title /*= ""*/,
                  const char* extF /*= ""*/, const char* extD  /*= ""*/ )
    :TNamed(name, title)
@@ -855,7 +855,7 @@ void TNeuron::AddInLayer(TNeuron * nearP)
 }
 
 //______________________________________________________________________________
-TNeuron::NeuronType TNeuron::GetType() const
+TNeuron::ENeuronType TNeuron::GetType() const
 {
    // Returns the neuron type.
    return fType;
diff --git a/tmva/src/MethodTMlpANN.cxx b/tmva/src/MethodTMlpANN.cxx
index 298c2fb8ab8..4be3c3ddd16 100644
--- a/tmva/src/MethodTMlpANN.cxx
+++ b/tmva/src/MethodTMlpANN.cxx
@@ -1,4 +1,4 @@
-// @(#)root/tmva $Id: MethodTMlpANN.cxx,v 1.34 2006/11/17 00:21:35 stelzer Exp $ 
+// @(#)root/tmva $Id: MethodTMlpANN.cxx,v 1.10 2006/11/20 15:35:28 brun Exp $ 
 // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss 
 /**********************************************************************************
  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
@@ -59,8 +59,8 @@
 
 // some additional TMlpANN options
 const Bool_t EnforceNormalization__=kTRUE;
-const TMultiLayerPerceptron::LearningMethod LearningMethod__= TMultiLayerPerceptron::kStochastic;
-// const TMultiLayerPerceptron::LearningMethod LearningMethod__= TMultiLayerPerceptron::kBatch;
+const TMultiLayerPerceptron::ELearningMethod LearningMethod__= TMultiLayerPerceptron::kStochastic;
+// const TMultiLayerPerceptron::ELearningMethod LearningMethod__= TMultiLayerPerceptron::kBatch;
 
 ClassImp(TMVA::MethodTMlpANN)
    ;
-- 
GitLab