diff --git a/tutorials/tmva/TMVAClassificationApplication.C b/tutorials/tmva/TMVAClassificationApplication.C index 8c6db1ea578e08cdbe7d9ef357e6913817947008..255e1872f98c7c603108ebfdccd896927f1deeb6 100644 --- a/tutorials/tmva/TMVAClassificationApplication.C +++ b/tutorials/tmva/TMVAClassificationApplication.C @@ -83,6 +83,7 @@ void TMVAClassificationApplication( TString myMethodList = "" ) Use["MLPBNN"] = 1; // Recommended ANN with BFGS training method and bayesian regulator Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH Use["TMlpANN"] = 0; // ROOT's own ANN + Use["DNN"] = 0; // improved implementation of a NN // // Support Vector Machine Use["SVM"] = 1; @@ -92,6 +93,7 @@ void TMVAClassificationApplication( TString myMethodList = "" ) Use["BDTG"] = 0; // uses Gradient Boost Use["BDTB"] = 0; // uses Bagging Use["BDTD"] = 0; // decorrelation + Adaptive Boost + Use["BDTF"] = 0; // allow usage of fisher discriminant for node splitting // // Friedman's RuleFit method, ie, an optimised series of cuts ("rules") Use["RuleFit"] = 1; @@ -173,8 +175,9 @@ void TMVAClassificationApplication( TString myMethodList = "" ) TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0); TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0); TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0); - TH1F *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0); - TH1F *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0); + TH1F *histNnC(0), *histNnT(0), *histNdn(0), *histBdt(0), *histBdtG(0), *histBdtB(0), *histBdtD(0); + TH1F *histBdtF(0), *histRf(0), *histSVMG(0), *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0); + TH1F *histCat(0), *histPBdt(0); if (Use["Likelihood"]) histLk = new TH1F( "MVA_Likelihood", "MVA_Likelihood", nbin, -1, 1 ); if (Use["LikelihoodD"]) histLkD = new TH1F( "MVA_LikelihoodD", "MVA_LikelihoodD", nbin, -1, 0.9999 ); @@ -195,9 +198,12 @@ void TMVAClassificationApplication( TString myMethodList = "" ) if (Use["MLPBNN"]) histNnbnn = new TH1F( "MVA_MLPBNN", "MVA_MLPBNN", nbin, -1.25, 1.5 ); if (Use["CFMlpANN"]) histNnC = new TH1F( "MVA_CFMlpANN", "MVA_CFMlpANN", nbin, 0, 1 ); if (Use["TMlpANN"]) histNnT = new TH1F( "MVA_TMlpANN", "MVA_TMlpANN", nbin, -1.3, 1.3 ); + if (Use["DNN"]) histNdn = new TH1F( "MVA_DNN", "MVA_DNN", nbin, -0.1, 1.1 ); if (Use["BDT"]) histBdt = new TH1F( "MVA_BDT", "MVA_BDT", nbin, -0.8, 0.8 ); - if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); if (Use["BDTG"]) histBdtG = new TH1F( "MVA_BDTG", "MVA_BDTG", nbin, -1.0, 1.0 ); + if (Use["BDTB"]) histBdtB = new TH1F( "MVA_BDTB", "MVA_BDTB", nbin, -1.0, 1.0 ); + if (Use["BDTD"]) histBdtD = new TH1F( "MVA_BDTD", "MVA_BDTD", nbin, -0.8, 0.8 ); + if (Use["BDTF"]) histBdtF = new TH1F( "MVA_BDTF", "MVA_BDTF", nbin, -1.0, 1.0 ); if (Use["RuleFit"]) histRf = new TH1F( "MVA_RuleFit", "MVA_RuleFit", nbin, -2.0, 2.0 ); if (Use["SVM_Gauss"]) histSVMG = new TH1F( "MVA_SVM_Gauss", "MVA_SVM_Gauss", nbin, 0.0, 1.0 ); if (Use["SVM_Poly"]) histSVMP = new TH1F( "MVA_SVM_Poly", "MVA_SVM_Poly", nbin, 0.0, 1.0 ); @@ -298,9 +304,12 @@ void TMVAClassificationApplication( TString myMethodList = "" ) if (Use["MLPBNN" ]) histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method" ) ); if (Use["CFMlpANN" ]) histNnC ->Fill( reader->EvaluateMVA( "CFMlpANN method" ) ); if (Use["TMlpANN" ]) histNnT ->Fill( reader->EvaluateMVA( "TMlpANN method" ) ); + if (Use["DNN" ]) histNdn ->Fill( reader->EvaluateMVA( "DNN method" ) ); if (Use["BDT" ]) histBdt ->Fill( reader->EvaluateMVA( "BDT method" ) ); - if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); if (Use["BDTG" ]) histBdtG ->Fill( reader->EvaluateMVA( "BDTG method" ) ); + if (Use["BDTB" ]) histBdtB ->Fill( reader->EvaluateMVA( "BDTB method" ) ); + if (Use["BDTD" ]) histBdtD ->Fill( reader->EvaluateMVA( "BDTD method" ) ); + if (Use["BDTF" ]) histBdtF ->Fill( reader->EvaluateMVA( "BDTF method" ) ); if (Use["RuleFit" ]) histRf ->Fill( reader->EvaluateMVA( "RuleFit method" ) ); if (Use["SVM_Gauss" ]) histSVMG ->Fill( reader->EvaluateMVA( "SVM_Gauss method" ) ); if (Use["SVM_Poly" ]) histSVMP ->Fill( reader->EvaluateMVA( "SVM_Poly method" ) ); @@ -380,9 +389,12 @@ void TMVAClassificationApplication( TString myMethodList = "" ) if (Use["MLPBNN" ]) histNnbnn ->Write(); if (Use["CFMlpANN" ]) histNnC ->Write(); if (Use["TMlpANN" ]) histNnT ->Write(); + if (Use["DNN" ]) histNdn ->Write(); if (Use["BDT" ]) histBdt ->Write(); - if (Use["BDTD" ]) histBdtD ->Write(); if (Use["BDTG" ]) histBdtG ->Write(); + if (Use["BDTB" ]) histBdtB ->Write(); + if (Use["BDTD" ]) histBdtD ->Write(); + if (Use["BDTF" ]) histBdtF ->Write(); if (Use["RuleFit" ]) histRf ->Write(); if (Use["SVM_Gauss" ]) histSVMG ->Write(); if (Use["SVM_Poly" ]) histSVMP ->Write();